Integrierter Pflanzenbau in Bayern

- Ergebnisse aus Feldversuchen -

Ernte 1999

Futterpflanzen

Welsches und Bastardweidelgras

Ergebnisse für die Beratung, erarbeitet in Zusammenarbeit mit den Landwirtschaftsämtern (Sachgebiete 3.1 und 2.1 P) und den Staatlichen Versuchsgütern

Autoren: Dr. S. Hartmann, G. Rößl

Herausgeber: Bayerische Landesanstalt für Bodenkultur und Pflanzenbau (LBP)

Veröffentlichung - auch auszugsweise - nur mit Genehmigung der LBP

Futterpflanzenbau u. -züchtung Postfach 1641 Vöttinger Str. 38 85316 Freising 85354 Freising Tel: 08161/71-3650 Fax: 08161/71-4305

e-mail: <u>stephan.hartmann@lfl.bayern.de</u>

Internetadresse: WWW.LfL.Bayern.de

Inhaltsverzeichnis Futterpflanzenheft 1999

Inhaltsverzeichnis Futterpflanzenheft 1999	
Inhaltsverzeichnis Futterpflanzenheft 1999 Verwendete Abkürzungen:	3
Einleitung: Anbauflächen, Entwicklungstendenzen im Feldfutterbau, Allgemeine Hinweise	
Dateiübersicht zum Berichtszeitraum 1999	
Futterpflanzenanbau in Bayern 1974 - 1999, Grafik	7
Chemische und physikalische Untersuchungen - Formeln	ε
Verzeichnis der geprüften Sorten 1999	11
Prüfungsvoraussetzungen für Futterpflanzen - Sortenversuche Ernte 1999	
Welsches und Bastardweidelgras	13
Kommentar	
Welsches Weidelgras, Versuch 390, 2. Hauptnutzungsjahr	17
Ertrag - Trockenmasse , Rohprotein, Wachstumsbeobachtungen-	17
Ertrag - Trockenmasse und Rohprotein mehrjährig	22
Wachstumsbeobachtungen mehrjährig	23
Bastardweidelgras, Versuch 398, 2. Hauptnutzungsjahr	24
Ertrag - Trockenmasse, Rohprotein, Rohfaser, Wachstumsbeobachtungen	24
Ertrag - Trockenmasse und Rohprotein mehrjährig	29

Verwendete Abkürzungen:

Fruchtarten:

AKL Alexandrinerklee

RKL Rotklee

WEI Einjähriges Weidelgras

WIS Saatwicke

WV Welsches Weidelgras WB Bastardweidelgras

WD Deutsches Weidelgras

Statistik:

DS Durchschnitt

GD Grenzdifferenz

Parameter:

RF Rohfaser

RP Rohprotein GM Grünmasse

TM Trockenmasse

TS Trockensubstanz

NEL Nettoenergie

<u>übrige</u>:

BSA Bundessortenamt

Mischungen:

WEI/AKL Kleegras-Mischung

WEI Liquattro (4n) 30,0 kg/ha

AKL Attila 12,0 kg/ha

42,0 kg/ha

WEI/WIS Gras-Wick-Mischung

WEI Silandra (2n) 19,0 kg/ha

WIS Berninova 30,0 kg/ha

49,0 kg/ha

Einleitung: Anbauflächen, Entwicklungstendenzen im Feldfutterbau, Allgemeine Hinweise

Die Anbauflächen für Ackerfutter im engeren Sinne - Klee und Kleegras, Luzerne sowie Gras auf dem Acker (vorwiegend Welsches Weidelgras), hat sich seit 1994 bei ca. 130.000 - 140.000 ha stabilisiert. Ab 1992 war ein Anstieg bis auf dieses neue Plateau zu beobachten. Änderungen in der EU-Agrargesetzgebung sind wohl für das Auf und Ab vordringlich verantwortlich.

Die Fläche des Feldfutterbaues im engeren Sinn wird sehr deutlich vom Umfang des Klee und Kleegrasanbaues bestimmt. Der Anbau von Luzerne und "Gras auf dem Acker" nimmt dagegen vergleichsweise bescheidene Flächen ein. Erstmals 1994 ist mit Hilfe der Daten aus INVEKOS eine Trennung der Anbauflächen von reinem Klee einerseits und Kleegras (einschließlich Klee-Luzerne-Grasgemenge) andererseits möglich. Diese Zahlen weisen nach, daß Klee-Grasgemische gegenüber dem reinen Klee sehr deutlich das Übergewicht besitzen: Mehr als 90 % Kleegras steht weniger als 10 % reiner Klee gegenüber. Damit fand der Beratungsansatz, dem Gemengeanbau mit seinen Vorteilen in ackerbaulicher und betriebswirtschaftlicher Sicht gegenüber den Reinanbau zu fördern, ihren weitgehenden Niederschlag.

Die weitere Entwicklung des Feldfutterbaues wird sicher sehr eng mit der künftigen EU-Agrargesetzgebung und ihren Fördermaßnahmen verknüpft sein.

So ist in den letzten Jahren an Hand der Absatzzahlen im Bereich der Feldsaaten parallel zu der leichten Abnahme des Futterpflanzenbaues auf dem Acker, eine Intensivierung von Grünlandflächen u. a. durch Nach- und Übersaaten zu beobachten. Sicher spielen hier die jeweils aktuelle Prämiensituation auf den berechtigten Ackerflächen und die fördertechnischen Nachteile, die ein Grünlandumbruch nach sich zieht, eine herausgehobene Rolle. Mögliche Auswirkungen neuerer politischer Entwicklungen auf dem Futterpflanzenbau lassen sich naturgemäß noch nicht an der Flächenentwicklung ablesen.

In Regionen mit traditionell starkem Feldfutterbau und bei Fortbestand der Milchviehhaltung wird der Klee und insbesondere der Kleegrasanbau eine bedeutende Position behalten.

Die "Bayerischen Qualitätssaatgutmischungen" mit den Vorschlägen zur Gestaltung des Kleegrasanbaues werden auch weiterhin Grundlage der Futterbauberatung in Bayern bilden. Der Bayerischen Landesanstalt als Initiator dieser Standardmischungen sind in den letzten Jahren kaum Misserfolge bzw. Änderungsvorschläge gemeldet worden. Besondere Bedeutung kommt den "Qualitätssaatgutmischungen" deshalb zu, weil sie regelmäßig kontrolliert, nur empfohlene Sorten enthalten dürfen. Auf diese Weise wird Sorten, die für bayerische Verhältnisse ungeeignet sind und oft nur aus Preisgründen Platz in Mischungen finden, ein Riegel vorgeschoben.

Auf dem Sektor Dauergrünland werden in Bayern jährlich ca. 15.000 dt Saatgutmischungen für Neuansaaten, Nachsaaten und Übersaaten vom Saatguthandel verkauft. Diese Menge reicht für die Verbesserung von rund 55.000 ha Grünlandfläche. Das entspricht rund 5 % des bayerischen Grünlandareals und konzentriert sich in der Regel auf das Grünland in den Voralpen und in den Mittelgebirgen.

Die Saatgutmischungen zur Grünlandverbesserung enthalten zum Teil hohe Anteile von Deutschem Weidelgras. Einerseits bringt diese Grasart erhebliche pflanzenbauliche Vorteile - hervorragende Aufwuchssicherheit und Durchsetzungsvermögen bei allen Ansaatverfahren, überdurchschnittliche Qualität, Tritt- und Gülleverträglichkeit und hohes Ertragspotential - andererseits ist Weidelgras aber auswinterungsgefährdet.

Es bestehen enorme Sortenunterschiede. Der Erfassung des Sortenwertes, gerade was die Ausdauer in typischen Grünlandgebieten betrifft, dienen Beobachtungsprüfungen in auswinterungsgefährdeten Lagen. Über die Ergebnisse der Prüfungen, zusammengefasst in einer Wertnote zur Ausdauer, wird in diesem Heft fortlaufend berichtet. Die Beachtung der

Ergebnisse ist für das nachhaltige Gelingen von Grünlandverbesserungsmaßnahmen in Bayern von grundlegender Bedeutung.

Allgemeine Hinweise

Der vorliegende Versuchsbericht soll die Versuchsergebnisse ausführlich und dennoch in kompakter Form darstellen.

Er enthält deshalb allgemeine Informationen zum Anbau in Bayern, die Beschreibung der Versuchsorte und Anbaubedingungen sowie einen Kommentar der Versuchsergebnisse.

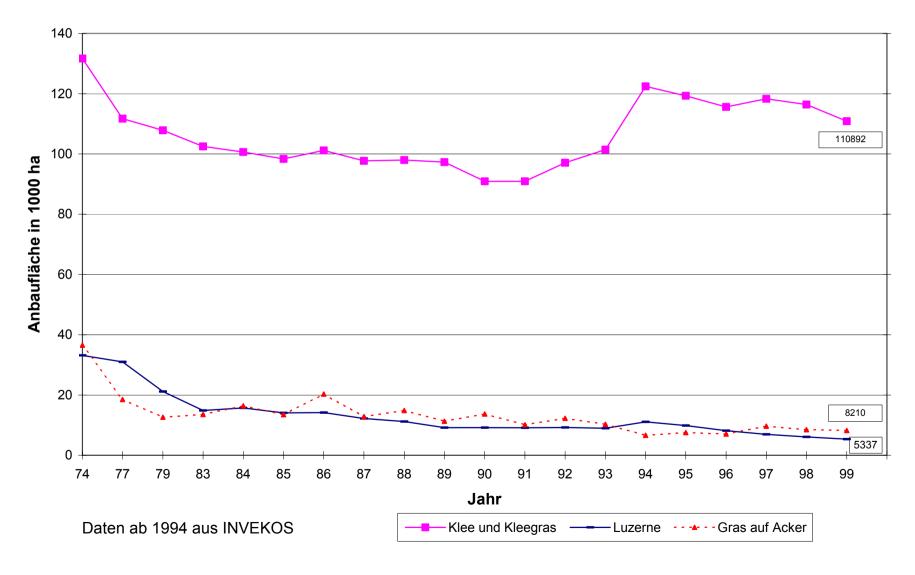
Dieses Berichtsheft besteht aus mehreren Teilen. Eine Übersicht der Dateien hierzu finden Sie auf Seite 6.

Erklärung der Mittelwertberechnungen

Die in den Tabellen mit Relativzahlen enthaltenen Mittelwerte (MW) sind wie folgt berechnet:

- Einjährige Ergebnisse:

Die Mittelwerte der Relativzahlen über die Orte werden auf der Basis des Gesamtdurchschnittes gebildet, d. h. es wird als Bezugsbasis die letzte Zeile verwendet und damit der Relativwert der Sorten berechnet (absolutes Sortenmittel bezogen auf absolutes Versuchsmittel).


- Mehrjährige Ergebnisse:

Der absolute Durchschnittsertrag aus den Einzeljahren unter Einbeziehung aller geprüften Sorten wird gleich 100 gesetzt. Der absolute Durchschnittsertrag aus den Einzeljahren der jeweiligen Sorte wird dazu ins Verhältnis gebracht.

Dateiübersicht zum Berichtszeitraum 1999

- Rotklee
 - Versuch 385 2. Hauptnutzungsjahr
- Welsches Weidelgras und Bastardweidelgras
 - Versuche 390 und 398 2. Hauptnutzungsjahr
- Sommerzwischenfrucht, frühe Saatzeit
 - Versuch 408
- Deutsches Weidelgras
 - Versuch 401 Sortenversuch zur Ausdauereignung1. Hauptnutzungsjahr
 - Versuch 400 Sortenversuch zur Ausdauereignung
 3. Hauptnutzungsjahr

Die Links zu den übrigen PDF - Dateien finden Sie unter: http://www.lfl.bayern.de/ipz/gruenland/09062/

Chemische und physikalische Untersuchungen - Formeln

A) Untersuchungen an der LBP

Die nachfolgend beschriebenen chemischen und physikalischen Untersuchungen werden an der LBP im Sachgebiet VU 4 Rohstoffqualität durchgeführt.

1.Trockensubstanz (TS)

1.1 Vortrocknung

Erntefrisches Pflanzenmaterial wird in den luftdurchlässigen Kunststoffgewebesäckchen gewogen, bei 60°C in der Trocknungsanlage der Probenvorbereitung in etwa 24 Stunden getrocknet. Nach dem Abkühlen wird die Probe mit den Säckchen nochmals gewogen. Sofort darauf wird die Gesamtprobe erst auf ca. 2 cm gehäckselt und dann vermahlen. Das nun leere Säckchen wird gewogen und als Tara abgezogen. Danach wird das gesamte Mahlgut kräftig durchmischt und darauf ein Aliquot in einen luftdichten Behälter als Laborprobe abgefüllt.

	Probe ungetrocknet	in g
-	Probe getrocknet	in g
=	Wasserentzug	in q

1.2. Endtrocknung

Von der Laborprobe wird der Wassergehalt mittels der Trockenschrankmethode festgestellt (VDLUFA Methodenbuch Band III, 3.1) Einwaage ca. 5g (jedoch genau gewogen) Trocknung 4 Stunden bei 103°C Abkühlung im Exsikkator Rückwaage

TS in % =
$$100 - \frac{\text{(Einwaage - Rückwaage)} \times 100}{\text{Einwaage}}$$

In der Endtrocknung wird der Wassergehalt der vorgetrockneten Probe errechnet. So kann nun auf den Trockensubstanzgehalt der Gesamtprobe geschlossen werden.

Die vorgetrocknete Probe hat ein Gewicht von X g bei einem Wassergehalt von Y %. Die Gesamttrockensubstanz der Probe ist nun X g \times (100- Y)/100

Der Wassergehalt der Grünprobe =

 $\frac{100\times (Gr\"{u}nprobe\ in\ g\ -\ Gesamttrockensubstanz\ in\ g)}{Gr\"{u}nprobe\ in\ g}$

2. Rohprotein (RP)

Der Rohproteingehalt in der TS errechnet als das 6,25-fache des für die jeweilige Probe ermittelten Stickstoffgehaltes. Die Stickstoffbestimmung erfolgt nach der Kjeldahl-Methode. Die Probemenge beträgt 1 Gramm. Der Aufschluss wird in einem Heizungsblock der Firma Gerhardt (1 Stunde, 400°C) durchgeführt. Destillation und Titration des Ammoniaks erfolgen vollautomatisch in Destillierautomaten der Firmen Gerhardt. Bei der Kjeldahl-Methode wird der Nitrat-Stickstoff nicht erfasst. Ebenso können zyklische N-Verbindungen wie Phenylalanin nicht bzw. nur unvollständig erfasst werden.

3. Rohfaser (RF)

Als Rohfasergehalt wird die Menge an säure- und alkaliunlöslichen, fettfreien organischen Bestandteilen bezeichnet, die nach dem Weender-Verfahren ermittelt werden. Dieses Verfahren wird als teilautomatische Schnellmethode mit verkürzter Kochzeit (3 Minuten) in der Fibertec-Apparatur durchgeführt. Die Probe (1 mm-Sieb) wird zunächst mit 150 ml heißer Schwefelsäure zur Ausscheidung stärkehaltiger Substanzen aufgeschlossen. Der Kochvorgang wird nach dem Ausspülen mit Wasser mit 150 ml Kalilauge wiederholt (Entfernung eiweißhaltiger Stoffe). Anschließend wird die Probe mit Aceton entfettet, bei 130°C 2 Stunden im Trockenschrank getrocknet, gewogen und anschließend 3 Stunden bei 580°C verascht. Aus der Gewichtsdifferenz wird der Rohfaseranteil ermittelt.

4. Rohasche (RA)

Ein g der homogenisierten Probe werden bei 580°C drei Stunden verascht und nach dem Abkühlen gewogen. Der kohlenstofffreie Rückstand ist der Rohascheanteil.

B) Untersuchungen an einzelnen TVA's

Solange die Inhaltsstoffe nach Kjeldahl bestimmt werden, wird - aus Gründen der dort knappen Trocknungskapazität - an den TVA's, die eigenständig den Trockensubstanzgehalt bestimmen, das Grüngut weiterhin gleich bei 103°C bis zur Gewichtskonstanz (ca. 24 h) getrocknet. Die Berechnung des Wassergehaltes der Grünprobe erfolgt wie unter A 1.2 beschrieben. Sollte im Sachgebiet VU 4 bei der Bestimmung der Inhaltsstoffe ein Methodenwechsel erfolgen, wird dieser Sachverhalt zu überprüfen sein.

C) Formeln

Errechnung des Energiegehaltes in MJ NEL/ kg TM

Das energetische Leistungsvermögen der Futtermittel für Milchkühe wird als Nettoenergie-Laktation (NEL) berechnet und in Mega-Joule (MJ) angegeben (4,186 MJ = 1 Mcal).

Entsprechend den Berechnungen von VAN Es (1978) wird davon ausgegangen, dass bei einer Umsetzbarkeit von 57 % die umsetzbare Energie (ME) zu 60 % ausgenutzt wird und dass sich k mit jeder Einheit von g um 0,4 % ändert:

(I) NEL (MJ) =
$$0.6 \times (1 + 0.004 \times (q - 57) \times ME (MJ)$$

Hinsichtlich der in Gleichung I eingehenden Variablen (ME und q) ist folgendes zu beachten:

ME: Die Errechnung des Gehaltes an ME erfolgt nach einer von der Gesellschaft für Ernährungsphysiologie (GfE) 1995 angegebenen Gleichung, die auf Ergebnissen von HOFFMANN et al. 1971 beruht und durch die BLT Grub aktualisiert wurde.

(II) ME (MJ) =
$$0.0147 \times DP \times RP + 0.0312 \times DL \times RL/10 + 0.0136 \times DF \times RF + 0.0147 \times DX \times RX)/10$$

wobei:

$$\begin{array}{lll} \text{DP =} & -0.7 \times \text{RF} + 89 & \text{(in \%);} \\ \text{DF =} & -1.24 \times \text{RF} + 96.1 & \text{(in \%);} \\ \text{DX =} & -1.10 \times \text{RF} + 99.4 & \text{(in \%);} \\ \text{DL =} & 55.8 & \text{(in \%);} \\ \text{RL =} & -0.87 \times \text{RF} + 53.0 & \text{(in g/kg);} \\ \text{RX =} & 100 - \text{RP} - \text{RF} - \text{RA} - \text{RL/10} & \text{(in \%);} \\ \end{array}$$

q: Für die Bestimmung der Umsetzbarkeit muss neben dem Gehalt an ME auch der Gehalt an Bruttoenergie (GE) bekannt sein. Dieser kann aus den nach der Weender-Analyse ermittelten Gehalten an Rohnährstoffen (GfE 1995, geändert nach BLT Grub) errechnet werden:

(III) GE (MJ) = $0.239 \times RP + 0.398 \times RL + 0.201 \times RF + 0.175 \times RX$ q =ME/GE × 100

Verzeichnis der geprüften Sorten 1999

	Kenn-	Sortenname		Züchter /			Kenn-	Sortenname	;	Züchter /	
Nr.	Nr.			Sorteninhaber		Nr.	Nr.			Sorteninhaber	
	BSA						BSA				
	KURZL	EBIGE W	EID	ELGRÄSER	Diploid (2	2n), Tet	raploid (4	ln)			
	Welsches	s Weidelgras			1		Bastard	weidelgras			
	VN 390	(Anlage 1997)		2. Hauptnutzungsjahr			VN 398	(Anlage 199	7)	2. Hauptnutzungsjahr	
1	19	Lemtal	(2n)	Van der Have		1	20	Pilot	(2n)	Saatzucht Steinach	
2	65	Lipo	(4n)	DSV, Lippstadt		2	34	Gazella	(4n)	DSV, Lippstadt	
3	227	Ligrande	(2n)	DSV, Lippstadt		3	48	Pirol	(2n)	Saatzucht Steinach	
4	241	Domino	(4n)	DLF-Trifolium		4	60	Tapirus	(4n)	DSV, Lippstadt	
5	242	Bellem	(2n)	Freudenberger		5	61	Boxer	(4n)	Freudenberger	
6	244	Orlando	(2n)	DLF-Trifolium			•	•		•	
7	249	Jeanne	(4n)	DLF-Trifolium							
8	251	Zorro	(4n)	DLF-Trifolium							
9	256	Taurus	(4n)	DLF-Trifolium							
10	273	Fabio	(4n)	Zelder							

Prüfungsvoraussetzungen für Futterpflanzen - Sortenversuche Ernte 1999

Langj. Jah Nieder-	resmittel mi.Tg.	Höhe	Boo	den-	Bodenuntersuchungen (mg/100gr.Boden)			D ü n g u n g Vorfrucht kg/ha (rein)					Saat- stärke	Aussaat am	
schl. mm	Temp. °C	über NN	Art	Zahl	P2O5	K20	MgO	ph-Wert		N HNJ	P2O5 HNJ	K2O HNJ	MgO HNJ	Körner/qm	
	WELS	CHES	WEI	DEL	GRA	S		VN 390		2. Hau	ptnutz	ungsja	hr		
1024 840	7,5 7,3	560 345	sL sL	45 54	31 6	18 7	12 o.A.	6,6 5,6	Brache Wiese	390 400	270 170	437 255	o.A. 51	1000 (2n) 800 (4n) 1000 (2n)	12.08.1997 16.09.1997
I	BASTA	ARDW	EIDE	E L G I	 Ras			 VN 398		 2. Hau	ptnutz	ungsja	hr	800 (4n)	
1024	7,5	560	sL	45	31	18	12	6,6	Brache	390	. 270	• •	o.A.	1000 (2n)	12.08.1997
840	7,3	344	sL	54	5	9	o.A.	5,5	Wiese	400	170	255	51	1000 (4n) 800 (4n)	16.09.1997
	Nieder-schl. mm	schl. mm °C WELS 1024 7,5 840 7,3 BASTA 1024 7,5	Nieder-schl. mm mi.Tg. Temp. °C Höhe über NN WELSCHES 1024 7,5 560 840 7,3 345 BASTARDW 1024 7,5 560	Nieder-schl. mm mi.Tg. °C Höhe über NN Bod Art WELSCHES WEI 1024 7,5 560 sL 840 7,3 345 sL BASTARDWEIDE 1024 7,5 560 sL	Nieder-schl. mm mi.Tg. Temp. °C Höhe über NN Boden-Art Zahl WELSCHES WEIDEL 1024 7,5 560 sL 45 840 7,3 345 sL 54 BASTARDWEIDELG 1024 7,5 560 sL 45	Nieder-schl. mm mi.Tg. °C Höhe über NN Boden-Art Zahl P2O5 WELSCHES WEIDELGRA 1024 7,5 560 sl. 45 31 840 7,3 345 sl. 54 6 BASTARDWEIDELGRAS 1024 7,5 560 sl. 45 31	Nieder-schl. mm mi.Tg. Temp. oC Höhe über NN Boden- Art Zahl P2O5 (mg/100 K2O) WELSCHES WEIDELGRAS 1024 7,5 560 sL 45 31 18 840 7,3 345 sL 54 6 7 BASTARDWEIDELGRAS 1024 7,5 560 sL 45 31 18	Nieder-schl. mm mi.Tg. Temp. mm Höhe über NN Boden- Art Zahl P205 (mg/100gr.Bode MgO) WELSCHES WEIDELGRAS 1024 7,5 560 sL 45 31 18 12 840 7,3 345 sL 54 6 7 o.A. BASTARDWEIDELGRAS 1024 7,5 560 sL 45 31 18 12	Nieder-schl. mm mi.Tg. °C Höhe über NN Boden- Art Zahl P2O5 K2O MgO ph-Wert Zahl P2O5 K2O MgO ph-Wert NN VN 390 WELSCHES WEIDELGRAS VN 390 1024 7,5 560 sL 45 31 18 12 6,6 840 7,3 345 sL 54 6 7 o.A. 5,6 7 o.A. 5,6 BASTARDWEIDELGRAS VN 398 1024 7,5 560 sL 45 31 18 12 6,6	Nieder-schl. mm mi.Tg. °C Höhe über NN Boden-Art Zahl P2O5 (mg/100gr.Boden) Vorfrucht WELSCHES WEIDELGRAS VN 390 1024 7,5 560 sL 45 31 18 12 6,6 Brache 840 7,3 345 sL 54 6 7 o.A. 5,6 Wiese BASTARDWEIDELGRAS VN 398 1024 7,5 560 sL 45 31 18 12 6,6 Brache	Nieder-schl. mm mi.Tg. Temp. mm Höhe "C Boden- wiber NN (mg/100gr.Boden) Vorfrucht WELSCHES WEIDELGRAS VN 390 2. Hau 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390 840 7,3 345 sL 54 6 7 o.A. 5,6 Wiese 400 BASTARDWEIDELGRAS VN 398 2. Hau 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390	Nieder-schl. mm mi.Tg. Temp. mm Höhe "C Boden- wiber NN (mg/100gr.Boden) Vorfrucht kg/ha N P2O5 HNJ WELSCHES WEIDELGRAS VN 390 2. Hauptnutz 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390 270 840 7,3 345 sL 54 6 7 o.A. 5,6 Wiese 400 170 BASTARDWEIDELGRAS VN 398 2. Hauptnutz 2. Hauptnutz 2. Hauptnutz 390 270	Nieder-schl. mm mi.Tg. vC Höhe mm Boden-lüber NN (mg/100gr.Boden) Vorfrucht kg/ha (rein) N P205 K20 HNJ HNJ HNJ HNJ HNJ HNJ HNJ HNJ W E L S C H E S W E I D E L G R A S VN 390 2. Hauptnutzungsja 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390 270 437 840 7,3 345 sL 54 6 7 o.A. 5,6 Wiese 400 170 255 B A S T A R D W E I D E L G R A S VN 398 2. Hauptnutzungsja 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390 270 437	Nieder-schl. mi. Tg. schl. mm Höhe mm Boden-liber NN (mg/100gr.Boden) Vorfrucht kg/ha (rein) WELSCHES WEIDELGRAS VN 390 2. Hauptnutzungsjahr 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390 270 437 o.A. 840 7,3 345 sL 54 6 7 o.A. 5,6 Wiese 400 170 255 51 BASTARDWEIDELGRAS VN 398 2. Hauptnutzungsjahr 1024 7,5 560 sL 45 31 18 12 6,6 Brache 390 270 437 o.A.	Nieder-schl. mm mi.Tg. diber schl. Temp. mm Höhe or NN Boden-Art I Zahl P2O5 K2O MgO MgO Ph-Wert NN P2O5 K2O MgO Ph-Wert NN HNJ H

Welsches und Bastardweidelgras Kommentar

1. Hauptnutzungsjahr

Da in 1998 auf Grund einer Umstellung des Zulassungsverfahrens beim Bundessortenamt keine neuen Sorten zugelassen wurden, wurde 1998 auch kein Landessortenversuch für Welsches und Bastardweidelgras angelegt. Damit entfällt 1999 der Bericht für das 1. Hauptnutzungsjahr für diese Arten.

Welsches Weidelgras und Bastardweidelgras 2. Hauptnutzungsjahr

Zwei Sortenversuche zu Welschem Weidelgras und Bastardweidelgras blieben nach der üblichen Nutzungsdauer von einem Jahr ein weiteres Jahr zur Auswertung stehen. Die Prüfung in einem 2. Nutzungsjahr soll zum einen die unterschiedliche Eignung der Prüfsorten für eine längerfristige Nutzung testen, zum anderen grundsätzlich die Ertragshöhe von Welschem Weidelgras bzw. Bastardweidelgras in einem 2. Nutzungsjahr im Vergleich zum 1. Jahr klären

Besonderheiten an den Versuchsstellen

Osterseeon

6 Schnitte - Saat 12.08.1997

Alle Sorten gingen ohne Mängel in den Winter, in dessen Verlauf jedoch eine unterschiedlich starke Schädigung durch Fusarium eintrat. Trotz dieses Befalls kam es nur bei wenigen Versuchsgliedern zu einer stärkeren Lückigkeit.

Starker Rostbefall führte im Herbst zu deutlicher Sortendifferenzierung.

Steinach

5 Schnitte - Saat 16.09.1997

Der Stand vor Winter war als gut bis sehr gut zu bezeichnen, es kam aber aufgrund der Schneebedeckung von Mitte Januar bis Anfang März zu leichten Auswinterungen. Des Weiteren schädigten die Wechselfröste von Mitte März bis Mitte April, dies führte zum Teil zu erheblichen Lücken, die vermehrt durch die Gemeine Rispe geschlossen wurden. Rost trat zum fünften Aufwuchs auf.

Welsches Weidelgras, zweites Hauptnutzungsjahr einjähriges Ergebnis

Mit rund 132 dt/ha TM-Ertrag über Orte wird 1999 ein in dieser Versuchsreihe üblicher Ertragswert erreicht. Die 10 geprüften Sorten Welsches Weidelgras liegen im Gesamt-TM-Ertrag über Orte weiter auseinander als in ihrem 1. Hauptnutzungsjahr. Eine Differenzierung der Sorten nach TM-Ertrag ist deutlich. BELLEM und ORLANDO schneiden unterdurchschnittlich ab. DOMINO zeigt die höchsten TM-Erträge, TAURUS kann durch die im Vergleich zu den anderen Sorten deutlich geringeren Ausfälle zum Mittelfeld aufschließen.

Rohproteingehalt, Rohproteinertrag, Rohfasergehalt

Mit 15,4 % Rohproteingehalt über Orte und Sorten wird ein für die Art noch akzeptabler Wert ermittelt. Die Schwankungsbreite im Prozentgehalt reicht von 15,0 bis 15,8. Die Unterschiede zwischen den Sorten sind so gering, dass eine Sortendifferenzierung aufgrund des Rohproteinertrages oder -gehaltes nicht gerechtfertigt ist. Mit 25,3 % Rohfasergehalt über Orte und Sorten wird ein noch tragbarer Gehalt ermittelt. Die Spanne reicht von 24,7 bis 26,5 % und ist, für das geprüfte Sortiment betrachtet, wohl mehr vom Entwick-

lungsstadium als von der genetischen Veranlagung her beeinflusst.

Wachstumsbeobachtungen

Vergleicht man Differenz Mängel vor Winter/Mängel nach Winter, was einen Maßstab für die Winterhärte darstellt, so wurden Schäden im üblichen Rahmen bonitiert. Befall mit Fusarium trat auf hohem Niveau auf.

"Anfälligkeit für Bakteriosen" konnte dieses Jahr nicht erhoben werden.

Beim Merkmal "Rostanfälligkeit" fällt LIGRANDE, wie auch letztes Jahr, als schlechteste auf. Positiv ragt auch hier wieder DOMINO neben JEANNE und ZORRO hervor.

Welsches Weidelgras, mehrjähriges Ergebnis

Dargestellt werden nur die Sorten, die in jeder der 3 letzten Ansaaten vertreten waren. Die ausgewiesenen Mittelwerte beziehen sich auf diese 6 Sorten.

TM-Ertrag, Rohproteinertrag

Bei den mehrjährigen Vergleichen zeigen sich zwischen den Sorten keine Unterschiede.

Wachstumsbeobachtungen

In der Differenz Mängel vor/Mängel nach Winter sind Unterschiede von 2 Notenstufen festgehalten. Ebenso sind bei der Anfälligkeit gegenüber Fusarium Unterschiede feststellbar.

Diese sind besonders im 1. Hauptnutzungsjahr deutlich und verschwimmen im 2. Hauptnutzungsjahr. Hier zeichnen sich LIPO und DOMINO aus, während sich die Sorten LIGRANDE und BELLEM negativ vom Durchschnitt abheben. DOMINO und LIPO zeigen die günstigsten Noten bezüglich der Anfälligkeit für Bakteriosen. Allerdings basieren die Ergebnisse nur auf den Daten eines Standortes, können also nur als Hinweis gelten.

Bastardweidelgras, zweites Hauptnutzungsjahr einjähriges Ergebnis

TM-Ertrag

Mit 134 dt/ha TM-Ertrag über Orte und Sorten wird für ein 2. Hauptnutzungsjahr und die Art gutes Ertragsniveau erreicht.

Unter den 5 Prüfsorten schneidet wie im Vorjahr - aber nun eindeutig - PIROL am besten ab. Der Rest der Sorten liegt um den Versuchsdurchschnitt, BOXER rel. 88 deutlich darunter.

PIROL erreicht an beiden Versuchsorten das beste Ergebnis. Boxer ist jeweils das Schlusslicht. Wechselbeziehungen Ort/Sorte nachzugehen, erscheint nicht sinnvoll. Pirol zeigt sich ertragreicher als Pilot.

Rohproteinertrag, Rohfasergehalt

Mit 15,2 % Rohproteingehalt über Orte und Sorten wird ein für die Art noch mittlerer Wert ermittelt. Die Schwankungsbreite im Prozentgehalt reicht von 14,2 bis 16,2.

Im Rohproteinertrag werden durch die unterschiedlichen Gehalte die Ertragsdifferenzen zwischen den Sorten im Vergleich zum TM-Ertrag geringer, da die im TM-Ertrag führenden Sorten unterdurchschnittliche Gehalte aufweisen und umgekehrt. PIROL behauptet jedoch die führende Position aus dem Vorjahr.

Der Rohfasergehalt erreicht über Sorten und Orte mit 25,0 % ein tragbares Niveau. Die Spanne reicht von 24,3 bis 25,9 %. Ähnlich wie beim Rohproteingehalt wird der Gehalt wohl vom unterschiedlichen Blatt/Stengelverhältnis bestimmt. Günstig (niedrig) liegt die Sorte GAZELLA. Relativ hohe Rohfaserwerte erreichen PILOT und PIROL.

Wachstumsbeobachtungen

Die zur Beurteilung der Winterhärte gewöhnlich herangezogene Differenz Mängel vor Winter/Mängel nach Winter ist deutlich. TAPI-RUS zeigt sowohl hier als auch bei der Fusariumbonitur die günstigsten Werte. PILOT fällt durch seine vergleichsweise schlechte Rostbonitur auf. Die Sorte PIROL zeigte im Vergleich zu PILOT tendenzielle Fortschritte gegenüber den bonitierten Resistenzmerkmalen.

Bastardweidelgras, mehrjähriges Ergebnis

Mehrjährig dargestellt werden bei dieser Art lediglich die Versuchsdurchschnitte und keine einzelnen Werte zu Sorten, da dies nur für wenige möglich wäre. Jedoch lässt sich das Verhalten von Bastardweidelgras zu Welschem Weidelgras an diesen Zahlen beispielhaft vergleichen:

- Die Ertragsausfälle (TM-Gesamt) vom 1. zum 2. Hauptnutzungsjahr sind bei Bastardweidelgras erwartungsgemäß geringer als bei Welschem Weidelgras.
- Jedoch liegt das Ertragsniveau des 1. Hauptnutzungsjahres bei Bastardweidelgras niedriger.
- Beide Arten erreichen im 2. Hauptnutzungsjahr somit das gleiche Ertragsniveau. Dies gilt aber nur für diesen Dreijahreszeitraum. Vergleicht man die Versuche der letzten sechs Jahre, ergibt sich die bekannte Ertragsüberlegenheit des Bastardweidelgrases im 2. Hauptnutzungsjahr von ca. 10%.
- Der Rohproteinertrag liegt bei beiden Arten auf vergleichbaren Niveau.
- Die Differenz vor/nach Winter ist bei Bastardweidelgras erwartungsgemäß geringer ebenso die Bonitur zum Befall mit Fusarium.
- Die Beobachtungen zur Anfälligkeit gegenüber Bakteriose zeigt keine Unterschiede.

Welsches Weidelgras, Versuch 390, 2. Hauptnutzungsjahr

Ertrag - Trockenmasse, Rohprotein, Wachstumsbeobachtungen-

WELSCHES WEIDELGRAS

2. Hauptnutzungsjahr: 1999 (Anlage 1997)

ERTRÄGE Trockenmasse -Relativwerte-

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

Orte	Schnitte		Vers												
			St. DS	GD	entspricht	Lemtal	Lipo	Ligrande	Domino	Bellem	Orlando	Jeanne	Zorro	Taurus	Fabio
		Datum	dt/ha=100	5%	Prozent	(2n)	(4n)	(2n)	(4n)	(2n)	(2n)	(4n)	(4n)	(4n)	(4n)
Osterseeon	1. Schnitt	10.05.	41,4	3,7	9,0	81	106	99	97	83	95	107	119	104	109
	2. Schnitt	07.06.	34,3	1,6	4,5	113	96	108	99	100	102	93	95	101	94
	3. Schnitt	29.06.	18,4	0,8	4,2	110	96	108	96	106	95	94	97	103	96
	4. Schnitt	22.07.	21,5	1,1	5,1	97	97	104	98	98	103	103	95	100	103
	Schnitt	18.08.	11,4	1,6	13,8	101	95	106	112	106	100	98	88	98	99
	Schnitt	20.09.	26,7	1,9	7,0	98	91	93	109	101	102	105	103	101	97
	Gesamt		154,0	6,9	4,5	98	98	102	101	96	99	101	102	102	101
Steinach	1. Schnitt	25.05.	46,4	6,8	14,8	90	123	92	119	80	81	99	100	109	107
	2. Schnitt	21.06.	32,8	3,9	11,8	102	98	105	101	101	96	94	104	101	99
	3. Schnitt	14.07.	12,9	1,6	12,4	112	101	110	99	111	95	89	90	95	99
	4. Schnitt	11.08.	11,6	1,8	15,8	109	97	118	97	111	104	91	93	86	94
	Schnitt	14.09.	7,3	2,1	28,3	107	100	119	97	116	94	86	112	90	80
	Gesamt		111,2	11,0	9,8	99	109	103	108	95	90	94	100	101	101
Gesamt relat	tiv					99	102	102	104	96	96	98	101	101	101
Gesamt abso	olut		132,6			130,8	135,8	135,9	137,5	127,2	126,7	130,1	134,4	134,5	133,5
DS TS%			15,0			16,0	14,3	16,3	14,3	15,4	15,4	14,4	14,3	14,8	14,8

WELSCHES WEIDELGRAS

2. Hauptnutzungsjahr: 1999 (Anlage 1997)

ERTRÄGE Rohprotein -Relativwerte-

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

Orte	Schnitte		Vers												
			St. DS	GD	entspricht	Lemtal	Lipo	Ligrande	Domino	Bellem	Orlando	Jeanne	Zorro	Taurus	Fabio
		Datum	dt/ha=100	5%	Prozent	(2n)	(4n)	(2n)	(4n)	(2n)	(2n)	(4n)	(4n)	(4n)	(4n)
Osterseeon	1. Schnitt	10.05.	5,4	0,5	9,1	89	104	103	102	88	85	109	114	101	105
	2. Schnitt	07.06.	4,1	0,2	4,7	114	101	107	101	98	97	96	96	93	97
	3. Schnitt	29.06.	3,1	0,1	4,3	103	97	102	108	101	96	98	98	100	96
	4. Schnitt	22.07.	3,5	0,2	5,2	96	91	101	98	99	102	106	103	95	109
	Schnitt	18.08.	2,5	0,4	14,0	99	91	97	112	103	99	104	96	101	98
	Schnitt	20.09.	3,9	0,3	7,2	97	95	94	98	98	103	107	102	104	103
	Gesamt		22,7	1,0	4,6	99	97	101	102	97	96	104	103	99	102
Steinach	1. Schnitt	25.05.	3,9	0,6	15,0	92	121	95	115	85	90	95	104	106	98
	2. Schnitt	21.06.	3,4	0,4	12,2	97	99	108	107	103	96	92	97	103	98
	Schnitt	14.07.	2,2	0,3	12,9	103	103	102	100	111	98	94	96	96	98
	4. Schnitt	11.08.	1,9	0,3	16,3	103	100	120	102	106	102	97	95	86	89
	Schnitt	14.09.	1,4	0,4	30,1	102	98	125	97	106	99	86	118	88	83
	Gesamt		13,1	1,3	10,0	98	106	107	106	100	96	93	101	98	95
Gesamt relat	tiv					99	101	103	104	98	96	100	102	99	99
Gesamt abso	olut		17,9			17,7	18,0	18,5	18,6	17,6	17,2	17,9	18,3	17,7	17,8
DS RP%			15,4			15,0	15,3	15,1	15,6	15,1	15,3	15,8	15,8	15,2	15,4

WELSCHES WEIDELGRAS

2. Hauptnutzungsjahr: 1999 (Anlage 1997) Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

ROHFASER in % der Trockenmasse -absolut-

Orte	Schnitte											
		Vers	Lemtal	Lipo	Ligrande	Domino	Bellem	Orlando	Jeanne	Zorro	Taurus	Fabio
		St. DS	(2n)	(4n)	(2n)	(4n)	(2n)	(2n)	(4n)	(4n)	(4n)	(4n)
Osterseeon	1. Schnitt	23,8	23,7	23,7	24,0	23,5	23,2	24,9	24,0	23,3	23,7	24,6
	2. Schnitt	26,9	26,9	27,8	28,8	26,3	27,3	27,7	26,5	26,6	25,5	26,0
	Schnitt	23,0	23,9	22,1	24,9	22,8	24,3	23,6	22,7	21,8	21,8	22,1
	4. Schnitt	27,9	29,7	27,7	28,8	27,5	27,3	28,0	27,3	27,6	27,0	28,2
	5. Schnitt	24,1	24,0	24,9	25,6	23,9	23,5	23,7	23,5	23,4	24,7	24,7
	6. Schnitt	23,4	24,0	23,2	24,4	23,2	23,2	24,0	23,2	23,0	23,8	22,8
	Gesamt	24,8	25,3	24,9	26,0	24,5	24,8	25,3	24,5	24,5	24,2	24,7
Steinach	1. Schnitt	25,6	24,8	24,9	26,4	26,0	24,7	24,7	27,1	25,8	25,5	26,6
	2. Schnitt	27,5	28,9	27,7	28,9	27,1	26,1	26,5	28,3	28,0	27,4	26,9
	Schnitt	28,1	29,4	28,3	29,9	27,9	28,5	27,9	27,6	26,6	26,9	28,8
	4. Schnitt	26,6	27,6	26,2	27,9	25,9	25,3	26,7	27,5	24,8	26,6	27,7
	5. Schnitt	20,7	21,6	20,6	21,7	20,9	21,3	21,1	20,2	19,6	20,4	20,0
	Gesamt	25,7	26,4	25,5	26,9	25,5	25,1	25,3	26,1	24,9	25,3	26,0
	DS	25,3	25,9	25,2	26,5	25,0	25,0	25,3	25,3	24,7	24,8	25,4

WELSCHES WEIDELGRAS

2. Hauptnutzungsjahr: 1999 (Anlage 1997)

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

WACHSTUMSBEOBACHTUNGEN

FESTSTELL	UNGEN												
Schnitte		Anz. der		Lemtal	Lipo	Ligrande	Domino	Bellem	Orlando	Jeanne	Zorro	Taurus	Fabio
		Vers. Orte	DS	(2n)	(4n)	(2n)	(4n)	(2n)	(2n)	(4n)	(4n)	(4n)	(4n)
Mängel vor \	Vinter	2	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Mängel nach	n Winter	2	5,0	5,8	4,2	5,7	4,8	5,8	5,3	4,6	4,8	4,5	4,7
Differenz Mä	ingel v/n Winter		-4,0	-4,8	-3,2	-4,7	-3,8	-4,8	-4,3	-3,6	-3,8	-3,5	-3,7
Massenbildu	ıng bei	2	4,9	3,3	5,7	4,2	5,6	3,8	4,1	5,5	6,0	5,3	5,6
Anfangsentv	vicklung												
Mängel	1. Schnitt	1	2,9	4,0	2,5	3,0	3,0	4,0	3,2	2,2	2,0	2,5	2,7
beim Schnitt													
Wuchs-	1. Schnitt	1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
stadium	2. Schnitt	1	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
beim	3. Schnitt	1	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Schnitt	4. Schnitt	1	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
	5. Schnitt	1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
	6. Schnitt	1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Bestandes-	1. Schnitt	2	73,3	65,6	78,0	69,7	76,7	66,6	70,0	79,7	76,0	75,0	75,6
höhe/cm	2. Schnitt	1	64,1	63,7	68,2	62,7	61,7	61,5	64,0	66,0	65,0	64,2	64,5
	3. Schnitt	1	45,1	44,5	46,0	44,2	45,0	46,5	45,7	46,2	43,5	44,0	45,2
	4. Schnitt	1	36,9	40,0	38,2	40,0	36,7	35,7	37,2	36,2	35,0	34,0	36,0
	5. Schnitt	1	21,8	23,0	21,0	23,5	21,0	24,2	22,5	21,0	21,7	19,5	21,0
Massenbil-	1. Schnitt	2	5,4	4,8	5,7	5,1	5,5	5,0	5,3	5,5	5,7	5,8	5,6
dung nach	2. Schnitt	1	5,8	6,0	6,0	5,7	6,0	6,0	5,2	5,5	5,7	6,5	6,0
Schnitt	3. Schnitt	1	6,4	6,0	7,0	6,0	6,7	6,5	6,2	6,5	6,2	6,7	6,5
	4. Schnitt	1	4,8	4,7	5,0	4,7	5,5	5,0	4,7	5,0	4,5	4,7	4,5
	5. Schnitt	1	5,9	5,2	5,7	5,0	6,7	5,2	5,7	6,7	6,7	6,5	6,0

WELSCHES WEIDELGRAS 2. Hauptnutzungsjahr: 1999 (Anlage 1997) Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

WACHSTUMSBEOBACHTUNGEN

FESTSTEL	LUNGEN												
Schnitte		Anz. der		Lemtal	Lipo	Ligrande	Domino	Bellem	Orlando	Jeanne	Zorro	Taurus	Fabio
		Vers. Orte	DS	(2n)	(4n)	(2n)	(4n)	(2n)	(2n)	(4n)	(4n)	(4n)	(4n)
Lückigkeit	1. Schnitt	2	2,5	3,0	2,2	3,0	2,2	3,0	3,2	2,0	2,0	2,5	2,3
beim Schni	tt 2. Schnitt	1	2,4	2,5	2,2	3,0	2,7	2,5	2,5	2,0	2,2	2,7	2,0
	5. Schnitt	1	3,7	3,5	3,0	3,2	4,0	3,0	3,7	2,7	4,2	5,0	5,2
Verun-	1. Schnitt	1	3,0	3,5	2,5	3,7	2,5	3,7	3,5	2,5	3,0	2,7	2,7
krautung	2. Schnitt	1	2,5	2,5	2,0	2,7	2,7	2,7	2,7	2,0	2,7	2,7	2,5
beim Schni	tt 3. Schnitt	1	4,9	4,7	4,7	4,7	5,2	4,2	5,5	4,7	5,7	5,5	4,5
	4. Schnitt	1	5,0	5,0	5,0	4,7	4,5	4,7	5,5	4,7	5,5	5,5	5,5
	5. Schnitt	1	5,0	5,0	4,7	5,0	4,2	4,2	5,7	4,2	6,2	6,0	5,2
Anf. für	5. Schnitt	1	3,3	4,5	3,0	4,5	2,0	4,5	2,7	2,2	2,0	4,0	4,2
Rost	6. Schnitt	1	3,3	5,7	2,7	6,7	1,2	4,2	3,0	1,0	1,0	3,2	4,2
Anf. für	1. Schnitt	1	4,9	6,2	3,7	5,7	5,0	6,2	5,0	4,2	4,5	4,0	4,5
Fusarium													

Ertrag - Trockenmasse und Rohprotein mehrjährig

WELSCHES WEIDELGRAS

1. zu 2. Hauptnutzungsjahr

ERTRÄGE Trockenmasse und Rohprotein mehrjährig

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

VN 392 Anlage 1995; 1. HNJ 1996; 2. HNJ , VN 393 Anlage 1996; 1. HNJ 1997; 2. HNJ 1998

- Versuchsnummer 392, 393, 390 -

VN 390 Anlage 1997; 1. HNJ 1998; 2. HNJ 1999

jeweils für die Standorte Steinach und Osterseeon, da in Schmidhausen nur 1. HNJ

	Jahr	Zahl	Vers	Le	mtal	L	ipo	Ligra	nde	Do	mino	Ве	llem	Orl	ando
	oder	der	DS	(2	2n)	(4	4n)	(4r	1)	((4n)	(2	2n)	(2	2n)
	Versuch	Orte	dt/ha=100	[dt/ha]	[%]	[dt/ha]	[%]	[dt/ha]	[%]	[dt/ha]	[%]	[dt/ha]	[%]	[dt/ha]	[%]
TS Gesamt: absolut/rel.	1996	2	154,3	150,6	98	162,3	105	158,2	103	155,4	101	147,2	95	152,0	99
	1997	2	117,0	110,4	94	132,8	114	113,9	97	120,4	103	117,1	100	107,3	92
	1997	2	181,4	179,1	99	178,3	98	178,2	98	185,6	102	181,1	100	186,2	103
	1998	2	136,3	132,9	97	136,2	100	141,1	103	136,9	100	136,7	100	134,2	98
	1998	2	178,6	178,0	100	178,3	100	181,5	102	177,4	99	180,3	101	175,9	99
	1999	2	132,3	130,8	99	135,8	103	135,9	103	137,5	104	127,2	96	126,7	96
	1. HNJ	2	171,4	169,2	99	173,0	101	172,6	101	172,8	101	169,5	99	171,4	100
	2. HNJ	2	128,5	124,7	97	134,9	105	130,3	101	131,6	102	127,0	99	122,7	95
Ertragsabfall	VN 396	2	37,3	40,2	27	29,5	18	44,3	28	35,0	23	30,1	20	44,7	29
1. zu 2. HNJ	VN 397	2	45,1	46,2	26	42,1	24	37,1	21	48,7	26	44,4	25	52,0	28
	VN 390	2	46,3	47,2	27	42,5	24	45,6	25	39,9	22	53,1	29	49,2	28
	Mittel	2	42,9	44,5	26	38,0	22	42,3	25	41,2	24	42,5	25	48,6	28
RP Gesamt: absolut/rel.	1996	2	23,1	21,5	93	23,5	102	23,4	102	23,5	102	22,9	99	23,5	102
	1997	2	16,3	15,4	95	16,6	102	16,0	98	17,3	106	16,5	101	15,9	98
	1997	2	24,8	24,1	97	24,3	98	24,9	101	25,6	103	24,9	101	24,8	100
	1998	2	22,0	20,8	95	22,7	103	22,7	103	22,0	100	21,8	99	21,7	99
	1998	2	27,3	26,5	97	27,3	100	27,3	100	27,6	101	27,5	101	27,4	100
	1999	2	17,9	17,7	99	18,0	100	18,5	103	18,6	104	17,6	98	17,2	96
	1. HNJ	2	25,0	24,0	96	25,0	100	25,2	101	25,6	102	25,1	100	25,2	101
	2. HNJ	2	18,7	18,0	96	19,1	102	19,1	102	19,3	103	18,6	100	18,3	98
Ertragsabfall	VN 396	2	6,8	6,1	28	6,9	29	7,4	32	6,2	26	6,4	28	7,6	32
1. zu 2. HNJ	VN 397	2	2,8	3,3	14	1,6	7	2,2	9	3,6	14	3,1	12	3,1	13
	VN 390	2	9,3	8,8	33	9,3	34	8,8	32	9,0	33	9,9	36	10,2	37
	Mittel	2	6,3	6,1	25	5,9	24	6,1	24	6,3	25	6,5	26	7,0	28

Wachstumsbeobachtungen mehrjährig

WELSCHES WEIDELGRAS

1. zu 2. Hauptnutzungsjahr

WACHSTUMSBEOBACHTUNGEN mehrjährig

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag VN 392 Anlage 1995; 1. HNJ 1996; 2. HNJ 1, VN 393 Anlage 1996; 1. HNJ 1997; 2. HNJ 1998 VN 390 Anlage 1997; 1. HNJ 1998; 2. HNJ 1999

- Versuchsnummer 392, 393, 390 -

	Jahr oder Versuch	Zahl der Orte	Vers DS	Lemtal (2n)	Lipo (4n)	Ligrande (4n)	Domino (4n)	Bellem (2n)	Orlando (2n)
Diff. Mängel v/n Winter (1. auf 2. HNJ)	VN 392 VN 393 VN 390 DS	2 2 2 2	-6,0 -2,4 -4,3 -4,2	-6,6 -2,7 -4,8 -4,7	-4,2 -2,0 -3,2 -3,1	-6,7 -2,1 -4,7 -4,5	-5,2 -2,2 -3,8 -3,7	-6,7 -3,0 -4,8 -4,8	-6,6 -2,5 -4,3 -4,5
Anf. für Fusarium	1996 1997 1997 1998	2 2 2 2	3,9 6,3 2,7 2,5	4,0 6,8 2,7 2,7	3,4 5,6 1,5 2,5	3,8 7,0 4,2 2,5	3,5 6,2 1,5 2,5	4,9 6,0 3,2 2,5	4,0 6,3 2,8 2,0
Diff. Anf. für Fusarium (1. auf 2. HNJ)	1998 1999 VN 392 VN 393 VN 390 DS	2 2 2 2 2	 5,3 -2,4 0,2 -1,1	6,2 -2,8 0,0 -1,4	•	nangels Befall nic 5,7 -3,2 1,7 -0,8	•	6,2 -1,1 0,7 -0,2	5,0 -2,3 0,8 -0,8
Anf. für Bakteriose	1996 1997 1997 1998 1998	1 1 1 1 1	3,7 2,4 3,3 2,4 3,2	4,4 2,7 3,7 2,2 2,2	3,5 2,2 2,7 2,0 2,7	2,5 2,0 2,5 2,0 2,0 3,7	2,8 2,0 2,5 3,0 3,5	4,3 2,0 3,7 2,2 2,5	4,8 3,2 4,5 2,7 4,5
Diff. Anf. für Bakteriose (1. auf 2. HNJ)	1999 VN 392 VN 393 VN 390 DS	1 1 1 1	 1,4 0,9 1,1	1,7 1,5 1,6	Merkmal r 1,3 0,7 1,0	nangels Befall nic 0,5 0,5 0,5	ht erhoben 0,8 -0,5 0,2	2,3 1,5 1,9	1,6 1,8 1,7

Bastardweidelgras, Versuch 398, 2. Hauptnutzungsjahr

Ertrag - Trockenmasse, Rohprotein, Rohfaser, Wachstumsbeobachtungen -

BASTARDWEIDELGRAS 2. Hauptnutzungsjahr: 1999 (Anlage 1997) Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

ERTRÄGE Trockenmasse -Relativwerte-

Orte	Schnitte		Vers	00	(D21.4	0	D'I	-	
			St. DS	GD	entspricht	Pilot	Gazella	Pirol	Tapirus	Boxer
		Datum	dt/ha=100	5,0%	Prozent	(2n)	(4n)	(2n)	(4n)	(4n)
Osterseeon	1. Schnitt	10.05.	37,2	3,5	9,4	97	108	103	109	83
	Schnitt	07.06.	33,8	1,7	5,0	114	93	113	89	92
	Schnitt	29.06.	18,2	1,2	6,4	110	94	119	98	78
	4. Schnitt	22.07.	23,9	1,3	5,4	106	98	110	92	94
	Schnitt	18.08.	12,5	1,0	8,3	100	100	113	100	87
	Schnitt	20.09.	26,2	1,7	6,6	97	103	106	94	101
	Gesamt		152,0	4,1	2,7	104	100	110	97	90
Steinach	1. Schnitt	25.05.	51,8	6,4	12,4	77	115	95	121	91
	2. Schnitt	21.06.	30,6	2,1	7,0	112	106	127	78	78
	Schnitt	14.07.	14,2	2,5	17,7	95	91	124	102	87
	4. Schnitt	11.08.	13,2	1,7	13,0	100	97	111	104	87
	Schnitt	14.09.	7,6	1,1	15,1	89	102	110	113	86
	Gesamt		117,6	8,7	7,4	92	107	110	105	86
Gesamt rela	ıti∨					99	103	110	101	88
Gesamt abs	olut		134,8			132,9	138,8	147,6	135,8	118,9
DS TS%			15,6			16,6	14,9	16,3	15,2	14,9

2. Hauptnutzungsjahr: 1999 (Anlage 1997)

- Versuchsnummer 398 -

ERTRÄGE Rohprotein -Relativwerte-

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

Orte	Schnitte	Datum	Vers St. DS dt/ha=100	GD 5,0%	entspricht Prozent	Pilot (2n)	Gazella (4n)	Pirol (2n)	Tapirus (4n)	Boxer (4n)
Osterseeon	 Schnitt Schnitt Schnitt Schnitt Schnitt Schnitt Schnitt Gesamt 	10.05. 07.06. 29.06. 22.07. 18.08. 20.09.	5,0 4,0 3,0 3,9 2,6 3,8 22,7	0,5 0,2 0,2 0,2 0,2 0,2 0,2	9,7 5,1 6,4 5,2 8,7 6,3 2,7	100 103 103 103 99 103	100 95 97 101 97 99	95 112 111 101 103 93 102	115 89 99 99 104 95	90 101 89 96 96 109
Steinach	1. Schnitt 2. Schnitt 3. Schnitt 4. Schnitt 5. Schnitt Gesamt	25.05. 21.06. 14.07. 11.08. 14.09.	3,9 3,2 2,4 2,1 1,5 13,4	0,5 0,2 0,4 0,3 0,2 1,0	13,5 6,8 18,6 13,0 15,3 7,1	81 111 97 111 91 97	102 104 88 96 99	103 112 116 103 110 108	118 85 106 107 113 106	96 87 93 83 88 90
Gesamt relativ						100	99	104	103	94
Gesamt absolut			18,0			18,0	17,8	18,8	18,5	17,0
DS RP %)		15,2			15,3	14,9	14,2	15,6	16,2

2. Hauptnutzungsjahr: 1999 (Anlage 1997)

ROHFASER in % der Trockenmasse -absolut-

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

Orte	Schnitte	Vers St. DS dt/ha=100	Pilot (2n)	Gazella (4n)	Pirol (2n)	Tapirus (4n)	Boxer (4n)
Osterseeon	1. Schnitt 2. Schnitt 3. Schnitt 4. Schnitt 5. Schnitt 6. Schnitt	23,8 26,4 22,5 27,1 25,1 23,4	23,5 28,3 23,3 29,0 25,5 23,0	24,0 26,7 21,6 25,7 24,9 23,1	24,5 27,7 23,8 28,9 25,9 23,3	24,2 24,9 21,8 25,7 24,9 23,9	23,1 24,6 22,1 26,6 24,6 24,1
Steinach	Gesamt 1. Schnitt 2. Schnitt 3. Schnitt 4. Schnitt 5. Schnitt Gesamt	24,7 26,9 25,4 28,4 25,9 20,4 25,4	25,4 26,3 27,1 28,7 24,6 21,1 25,5	24,3 26,7 24,6 27,3 23,9 19,1 24,3	25,6 27,1 26,5 29,7 27,2 21,0 26,3	24,2 28,2 24,3 28,7 26,0 20,6 25,5	24,1 26,5 24,9 27,8 27,8 20,4 25,4
	DS	25,1	25,5	24,3	26,0	24,9	24,8

2. Hauptnutzungsjahr: 1999 Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

(Anlage 1997)

WACHSTUMSBEOBACHTUNGEN

FESTSTELLU	INGEN							
Schnitte		Anz. der Vers. Orte	DS	Pilot (2n)	Gazella (4n)	Pirol (2n)	Tapirus (4n)	Boxer (4n)
Mängel vor W		2	1,0	1,0	1,0	1,0	1,0	1,0
Mängel nach Winter Differenz Mängel v/n Winter		2	4,4 2,7	5,0 -4,0	4,1 -3,1	4,5 -3,5	3,2 -2,2	5,2 -4,2
Massenbildung bei Anfangsentwicklung		2	5,6	4,6	7,1	7,1 5,3		4,5
Mängel 1. Schnitt beim Schnitt		1	3,5	3,5	2,7	3,2	3,2	4,7
Wuchs-	1. Schnitt	1	1,0	1,0	1,0	1,0	1,0	1,0
stadium	2. Schnitt	1	3,0	3,0	3,0	3,0	3,0	3,0
beim	Schnitt	1	2,0	2,0	2,0	2,0	2,0	2,0
Schnitt	4. Schnitt	1	2,0	2,0	2,0	2,0	2,0	2,0
	5. Schnitt	1	1,0	1,0	1,0	1,0	1,0	1,0
	6. Schnitt	1	1,0	1,0	1,0	1,0	1,0	1,0
Bestandes-	1. Schnitt	2	70,5	69,8	77,3	70,6	75,3	59,3
höhe/cm	2. Schnitt	1	56,5	65,0	58,7	65,2	48,5	45,0
	Schnitt	1	43,5	46,5	42,7	48,7	40,7	39,0
	4. Schnitt	1	34,8	40,0	30,7	40,5	33,2	29,5
	5. Schnitt	1	24,3	25,2	22,5	26,5	24,5	23,0
Massenbil-	1. Schnitt	2	5,5	6,0	5,6	6,2	4,6	5,0
dung nach	2. Schnitt	1	5,2	5,7	5,2	6,0	5,0	4,0
Schnitt	3. Schnitt	1	6,4	6,5	6,7	7,0	6,2	5,7
	4. Schnitt	1	5,2	4,7	5,5	6,0	5,0	4,7
	5. Schnitt	1	6,6	6,2	7,0	6,5	6,7	6,7

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

2. Hauptnutzungsjahr: 1999 (Anla

(Anlage 1997)

WACHSTUMSBEOBACHTUNGEN

FESTSTELLU								_
	Schnitte	Anz. der Vers. Orte	DS	Pilot (2n)	Gazella (4n)	Pirol (2n)	Tapirus (4n)	Boxer (4n)
Lager bei Schnitt	1. Schnitt	1	1,8	1,0	3,5	1,0	2,7	1,0
Lückigkeit beim Schnitt	 Schnitt Schnitt Schnitt 	2 1 1	1,8 1,9 2,3	2,6 2,0 3,0	1,5 2,0 2,0	2,1 2,0 2,2	1,3 1,5 2,0	1,3 2,0 2,2
Verun- krautung beim Schnitt	 Schnitt Schnitt Schnitt Schnitt Schnitt 	1 1 1 1	2,4 2,1 2,7 2,8 2,6	2,7 2,2 3,2 3,7 3,5	2,0 2,0 2,2 2,0 2,0	2,7 2,0 2,2 2,7 2,5	2,0 2,0 2,5 2,0 2,2	2,5 2,2 3,2 3,5 3,0
Anf. für Rost	5. Schnitt6. Schnitt	1	3,5 2,3	5,7 4,0	2,0 1,2	5,0 3,7	2,0 1,0	3,0 1,5
Anf. für Fuarium	1. Schnitt	1	4,8	5,5	4,2	4,7	3,5	6,0

Ertrag - Trockenmasse und Rohprotein mehrjährig -

BASTARDWEIDELGRAS

1. zu 2. Hauptnutzungsjahr

Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag

ERTRÄGE Trockenmasse und Rohprotein mehrjährig WACHSTUMSBEOBACHTUNGEN mehrjährig

- Versuchsnummer 396, 397, 398 -

VN 396 Anlage 1995; 1. HNJ 1996; 2. HNJ 1997

VN 397 Anlage 1996; 1. HNJ 1997; 2. HNJ 1998

VN 398 Anlage 1997; 1. HNJ 1998; 2. HNJ 1999

Versuch	Jahr	TS G Vers DS [dt/ha] [%]				RP Gesamt Ertragsabfall Vers DS 1. zu 2. HNJ [dt/ha] [%] [dt/ha] [%]		. HNJ	Diff. v/n Winter	Fusarium Diff zw. Note 1. HNJ 2. HNJ		Bakte Note	riose Diff zw. 1. HNJ 2. HNJ	
VN 396	1996 1997	147,8 122,7	88 73	25,1	17	22,1 16,6	90 68	5,5	25	-1,2 -5,0	2,9 5,0	-2,1	3,7 2,8	0,9
VN 397	1997 1998	177,7 136,4	106 81	41,3	23	24,0 20,8	98 85	3,2	13	0,4 -1,7	1,4 2,2 ¹⁾	-0,8	3,6 ¹⁾ 2,4	1,2
VN 398	1998 1999	176,6 134,8	106 81	41,8	24	27,2 18,0	111 74	9,2	34	0,2 -3,4	- 4,8 ¹⁾	-	2,9 -	-
DS DS	1996-1999 1996-1999	167,4 131,3	100 78	36,1	22	24,4 18,5	100 76	6,0	24	-0,2 -3,4	3,0 4,0	-1,0	3,0 2,6	0,4

jeweils für die Standorte Steinach und Osterseeon, da in Schmidhausen nur 1. HNJ