Integrierter Pflanzenbau in Bayern

- Ergebnisse aus Feldversuchen -

Ernte 2003

WINTERROGGEN

Ergebnisse für die Beratung aus Versuchen in Zusammenarbeit mit den Landwirtschaftsämtern (Amtsbereich Bodenkultur und Pflanzenbau) und staatlichen Versuchsgütern

Autoren: Dr. P. Doleschel, K. Fink, R. Graf, M. Schmidt

Herausgeber: Bayerische Landesanstalt für Landwirtschaft (LfL)

Veröffentlichung – auch auszugsweise – nur mit Genehmigung der LfL

Am Gereuth 8 85354 Freising Tel.: 08161/71-3628 Fax: 08161/71-4085

1

Internet: www.LfL.bayern.de

E-Mail: peter.doleschel@LfL.bayern.de

LfL-Versuche WINTERROGGEN

Inhaltsverzeichnis

Allgemeine Hinweise	3
WINTERROGGEN, Versuch 072 Faktorieller Sortenversuch zur Beurteilung von Resistenz, Anbaueigenschaften, Qualität und Ertrag	
Ertragsentwicklung, Anbauflächen und Sortenverbreitung	5
Winterroggenerzeugung in Bayern	7
Vermehrungsflächen Winterroggensorten	8
Sortenbeschreibung	9
Versuchsbeschreibung	10
Geprüfte Sorten / Stämme	11
Standortbeschreibung und Anbaubedingungen	12
Düngung und Pflanzenschutz	
Kommentar	14
Kornertrag relativ, Sorten und Orte	
Kornertrag absolut, Sorten und Behandlungen	18
Kornertrag relativ, Sorten 2003 und mehrjährig, adjustierte Mittelwerte, Mittelwerttest (SNK, P=5 %)	19
Kornertrag absolut, Sorten und Behandlungen, mehrjährig	
Kornertrag absolut, Sorten, Orte und Behandlungen	
Rentabilität des Produktionsmitteleinsatzes	
Beobachtungen und Feststellungen	26

Allgemeine Hinweise

Der vorliegende Versuchsbericht soll die Versuchsergebnisse ausführlich, und dennoch in kompakter Form, darstellen. Er enthält deshalb allgemeine Informationen zum Anbau in Bayern, die Beschreibung der Versuchsorte und Anbaubedingungen. Die ebenfalls enthaltene Sortenbeschreibung beruht auf mehrjährigen bayerischen Versuchsergebnissen; die Ausprägung der einzelnen Sortenmerkmale ist in der bewährten Symbolform dargestellt.

Erklärung der Mittelwertberechnungen

Die in den Tabellen mit Relativzahlen enthaltenen Mittelwerte (MW) sind wie folgt berechnet:

Die Relativzahlen für die einzelnen Versuchsorte werden auf der jeweiligen Basis (= Mittelwert) des Einzelortes berechnet, bei faktorieller Darstellung auf Basis je Faktorstufe.

Die Mittelwerte über die Orte werden auf der Basis des Gesamtdurchschnittes je Stufe, bzw. über alle Stufen, gebildet, d.h. es wird als Bezugsbasis das absolute Ertragsmittel in Bayern verwendet und damit der Relativwert der Sorten berechnet (absolutes Sortenmittel bezogen auf absolutes Versuchsmittel).

Ein- und mehrjährige Mittelwerttabellen mit statistischer Beurteilung

Unter "mehrjährig" sind alle Sorten aufgeführt, die dreijährig, zweijährig oder einjährig angebaut waren. Die unterschiedliche Anzahl an Prüfjahren und/oder -orten wird durch "Adjustierung" ausgeglichen, d.h. die Erträge

werden mit Hilfe eines statistischen Modells jeweils auf 3 Jahre, bzw. die maximale Anzahl an Orten "hochgerechnet". Damit sind alle Sorten, unabhängig von ihrer Prüfdauer und den jeweiligen –orten, vollständig und unverzerrt untereinander vergleichbar.

Liegen drei Versuchsjahre (das erste Jahr kann auch WP3 sein) vor, so kann das Ergebnis als endgültig gesichert angesehen werden. Damit ist eine abschließende Bewertung der Sortenleistung möglich. Als "vorläufig" wird das Ergebnis bezeichnet, wenn die jeweilige Sorte in 2 Jahren (das erste Jahr kann auch WP3 sein) im Versuch stand. Als "Trend" ist das auf 3 Jahre hochgerechnete Ergebnis zu betrachten, wenn Daten nur im aktuellen Prüfjahr (nur LSV) tatsächlich erhoben wurden.

Der am Tabellenende aufgeführte Mittelwert ist berechnet, als ob die aufgeführten Sorten jeweils an allen Orten in den 3 Jahren vorhanden gewesen wären.

Die Tabelle mit den Mittelwertvergleichen enthält die einjährigen und die mehrjährigen Ergebnisse. Die Werte sind der besseren Übersichtlichkeit wegen absteigend sortiert, bei der mehrjährigen Tabelle jeweils innerhalb der Prüfdauer-Einteilung.

Mittelwerte, die sich nicht signifikant unterscheiden, sind durch gleiche Buchstaben gekennzeichnet. Wenn zu vergleichende Mittelwerte keinen einzigen gleichen Buchstaben haben, so besteht bei der vorgegebenen Irrtumswahrscheinlichkeit (P) von 5 % ein signifikanter Unterschied.

Unterscheiden sich Sortenmittelwerte nicht signifikant, so heißt dies nicht zwangsläufig, dass die Sorten gleichwertig sind; vielmehr können diese Unterschiede bei der gewählten Irrtumswahrscheinlichkeit wegen der Streuung der Einzelergebnisse nicht statistisch abgesichert werden.

Allgemeine Hinweise - Fortsetzung

Zeichenerklärung für die Sortenbeschreibung:

- +++ sehr gut, sehr hoch, sehr früh, sehr kurz
- ++ gut bis sehr gut, hoch bis sehr hoch, früh bis sehr früh, kurz bis sehr kurz
- + gut, hoch, früh, kurz
- (+) mittel bis gut, mittel bis hoch, mittel bis früh, mittel bis kurz
- o mittel
- (-) mittel bis schlecht, mittel bis gering, mittel bis spät, mittel bis lang
- schlecht, gering, spät, lang
- schlecht bis sehr schlecht, gering bis sehr gering, spät bis sehr spät, lang bis sehr lang
- --- sehr schlecht, sehr gering, sehr spät, sehr lang

Ertragsentwicklung, Anbauflächen und Sortenverbreitung

Das mittlerweile beschlossene Ende der Roggenintervention hat zur Aussaat 2002 seine Schatten vorausgeworfen. Die Roggenanbaufläche ging zur Ernte 2003 noch einmal dramatisch um 11.000 Hektar zurück und lag nur noch bei rund 31.000 Hektar.

Die ungünstige Jahreswitterung brachte auch bei den Erträgen einen starken Einbruch. Die Roggenerträge erreichten in Bayern nur 38,1 dt/ha, das ist gegenüber dem Vorjahr ein Rückgang von 11,9 dt/ha. Dass ausgerechnet der robuste Roggen den höchsten Ertragseinbruch aller Getreidearten verzeichnen musste, mag zunächst überraschen. Dies lässt sich aber mit dem starken Flächenrückgang erklären, der den Roggen noch stärker als bisher auf schwache, typische Roggenböden zurückgedrängt hat.

Die Negativ-Rekorde bei Ertrag und Anbaufläche führten zwangsläufig zu einer gravierenden Unterversorgung mit Roggen in Bayern. Die Erntemenge lag 2003 nur bei knapp 120.000 Tonnen, das sind 80.000 Tonnen weniger als 2002. Trotz der guten Qualität der Ernte 2003 reicht damit die Mahlroggenmenge bei weitem nicht mehr für die Versorgung der bayerischen Mühlen aus. Diese vermahlen im Jahr durchschnittlich 170.000 Tonnen. Sollte die Anbaufläche in Bayern auf dem Tiefstand von 2003 verharren, müssen künftig größere Roggenmengen aus anderen Bundesländern eingeführt oder Lagerbestände aufgelöst werden.

Die Verknappung von Mahlroggen in Bayern hat zu einer deutlichen Erholung der Erzeugerpreise geführt. Möglicherweise bietet diese Situation einen Anreiz, die Roggenanbaufläche in Bayern nicht weiter einzuschränken. So könnte wenigstens in Jahren mit guten Erträgen und Qualitäten die Versorgung bayerischer Mühlen mit Brotroggen aus heimischer Erzeugung sichergestellt und damit bayerische Marktanteile erhalten werden. Sicher wäre es dazu zweckmäßiger, die Anbaufläche auf

wenigstens 50.000 bis 60.000 ha auszudehnen, um Ertragsschwankungen und Qualitätsprobleme ausgleichen zu können.

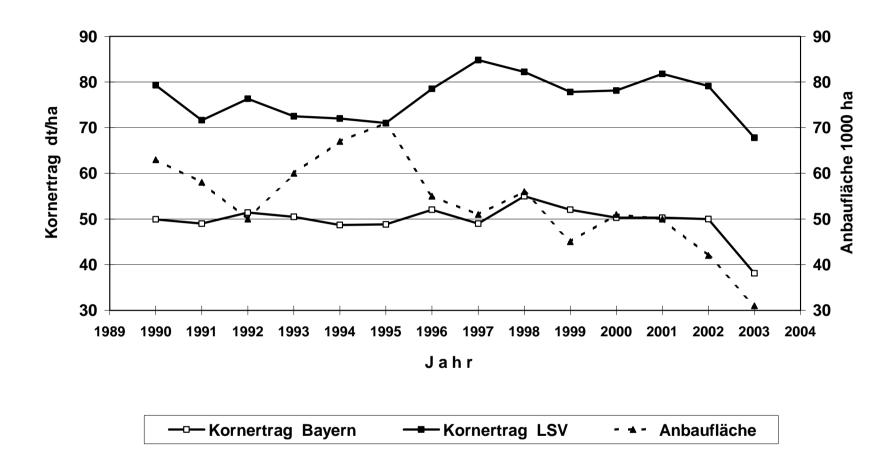
Trotz aller Schwierigkeiten wird der Roggen zumindest auf sehr leichten Böden auch weiterhin seinen Platz haben. Dort ist Roggen gegenüber anderen Getreidearten überaus wettbewerbsfähig.

Der Abwärtstrend bei Roggen wurde zur Ernte 2003 auch bei den Vermehrungsflächen deutlich. Die bayerische Roggenvermehrungsfläche ging von 1032 ha auf 876 ha zurück. Die größte Vermehrungsfläche entfiel mit 193 ha oder 22% auf die Hybridsorte Avanti, die damit Picasso (152 ha) auf Platz zwei verdrängte. Erst auf Platz drei folgte mit Matador (107 ha) eine Populationssorte. Platz vier konnte sich mit Treviso (95 ha) wieder eine Hybride sichern. Trotzdem ging die Vermehrungsfläche der Hybriden etwas stärker zurück als die der Populationssorten. Der Anteil der Hybridsorten verringerte sich dadurch ganz leicht von 58% auf 56%. Die synthetischen Sorten (Erläuterung siehe Kommentar) kamen auf 32 ha Vermehrungsfläche und blieben damit für die Aussaat 2003 ohne nennenswerte Bedeutung. Die von den bayerischen Landwirtschaftsämtern empfohlenen Roggensorten machen rund 90% der Vermehrungsfläche aus.

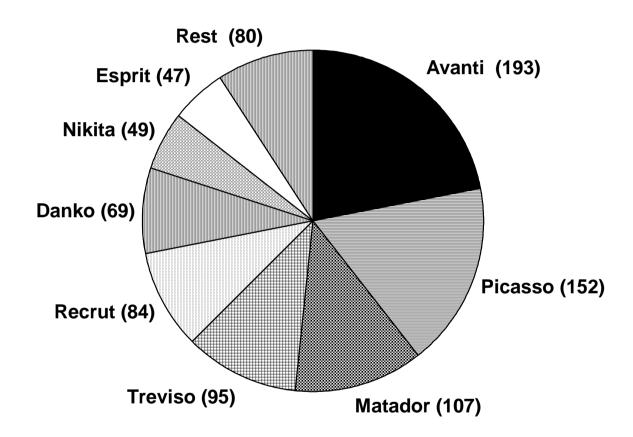
Vegetationsverlauf

Die Herbstbedingungen waren mit denen des Vorjahres vergleichbar. Im Unterschied zu 2001 konnten aber die Roggenversuche noch relativ zeitgerecht zwischen dem 24.09. und dem 02.10. ausgesät werden. Damit waren die Ausgangsbedingungen für den Roggen vergleichsweise günstig. So konnte sich der Roggen trotz der anhaltenden Niederschläge vor dem Winter noch einigermaßen gut entwickeln.

Der Kälteeinbruch im Dezember mit seinem abrupten Temperatursturz konnte dem Roggen aufgrund der guten Winterhärte nichts anhaben. Auch Schädigungen durch Schneeschimmel wurden nicht beobachtet.


Zum Vegetationsbeginn im März standen die Roggenversuche relativ gut. Die durch die reichlichen Herbst- und Winterniederschläge ausgesprochen niedrigen N_{min} -Werte wurden durch eine gegenüber dem Vorjahr leicht erhöhte Start-Stickstoffgabe ausgeglichen.

Der weitere Vegetationsverlauf war – mit regionalen Unterschieden – von zu geringen Niederschlägen gekennzeichnet. Dadurch gab es einen insgesamt niedrigen Krankheits- und Lagerdruck. Der Befall mit Rhynchosporium-Blattflecken lag aber geringfügig über dem sehr niedrigen Niveau von 2001, nachdem im April und Mai gebietsweise einzelne Regenfälle eine Infektion ermöglichten. Beim Braunrost wurde dagegen ein rekordverdächtig geringer Befallsdruck festgestellt, der Mittelwert der Bonituren von 4 Standorten in Stufe 1 lag nur bei 2,3.


Die Bestände präsentierten sich auf den Versuchsstandorten trotz des Wasserdefizits bis in den Juni hinein recht gut. Die anhaltende Trockenheit in Verbindung mit sehr hohen Temperaturen hat letztlich aber auch beim Roggen zu merklichen Ertragseinbußen geführt. Diese lagen in den Sortenversuchen in einem moderaten Rahmen, während im Praxisanbau der Rückzug des Roggens auf die leichten Standorte voll durchschlug und zu überproportionalen Mindererträgen führte. Dort waren auch durch den Regenmangel im Frühjahr bereits Vorschädigungen festzustellen.

Aufgrund der trockenen Witterung ist vor allem in Praxisschlägen, aber auch an einem Versuchsstandort (siehe Bonituren) Zwiewuchs stärker aufgetreten. Die Trockenheit hatte zunächst zu relativ geringen Bestandesdichten geführt. Dort, wo im Mai etwas ergiebigere Niederschläge fielen, hat der Roggen nachbestockt. Weil die unterständigen Triebe spät reifen und vom übrigen Bestand abgeschirmt werden, ist dort die Befruchtung schlecht und damit die Anfälligkeit für Mutterkorn hoch. Deshalb ist in einzelnen Regionen verstärkt Mutterkornbesatz aufgetreten.

Winterroggenerzeugung in Bayern

Vermehrungsflächen Winterroggensorten Bayern 2003, Gesamt 876 ha

Sortenbeschreibung

	Korn-	Ertraç	gskompoi	nenten	Stand-	Wuchs-	Ähren-	Reife	Fall-	Resi	stenz ge	egen
Sorte	ertrag	TKG	Kornz./	Bestan-	festig-	höhe	schie-		zahl	Rhyncho-	Mehl-	Braun-
			Ähre	desdichte	keit		ben			sporium	tau	rost
Boresto P	-	(+)	(-)	(-)	-	-	0	0	0	0	+	+
Danko P		+	-	(-)	+	(-)	(+)	0	0	(-)	+	(+)
Matador P	(-)	0	0	0	0	0	0	0	(+)	(-)	(-)	0
Nikita P	(-)	(+)	(-)	(-)	0	(-)	0	0	(+)	(-)	+	(+)
Recrut P*	(-)	(+)	(-)	0	(+)	(-)	0	0	(+)	0	(+)	(+)
Walet P		(+)	(-)	(-)	+	(-)	0	0	(+)	0	(+)	+
Avanti H	+++	(+)	(+)	(+)	(-)	(+)	0	0	+	(+)	(+)	(-)
Esprit H	++	0	(+)	(+)	(-)	0	0	0	+	(+)	0	(-)
Fernando H	+	0	(+)	(+)	0	(+)	0	0	+	0	+	-
Picasso H	+	0	0	(+)	(+)	+	0	0	+	0	(+)	(-)
Treviso H	+	(+)	(+)	0	+	(+)	0	0	(+)	0	(+)	(-)
Caroass S*	(+)	0	0	(+)	0	0	0	0	+	0	(+)	0

P = Populationssorte; H = Hybridsorte; S = synthetische Sorte

^{*)} vorläufig beurteilt

Versuch 072, Erntejahr 2003

Versuchsbeschreibung

Versuchsanlage: Spaltanlage, 2 Faktoren, 3 Wiederholungen

7 Orte, davon 4 Orte mit Wertprüfung

Faktoren: 1. Sorten: Hauptsortiment: 5 Hybride, 6 Populationssorten, 1 synthetische Sorte

Wertprüfung: 1 Vergleichssorte, 5 Stämme

(detaillierte Auflistung in Tabelle "Geprüfte Sorten/Stämme")

2. Intensität: Beschreibung der Stufen (Behandlungen):

	N-Düngung	Wachstumsregulator	Fungizide
Beh. 1	ortsüblich minus 30 %	ohne	ohne
Beh. 2	ortsüblich optimal	Terpal C 1,5 l/ha	gezielt nach Bedarf, BBCH 31-32 gegen Halmbruch; gegen Mehltau/Rost

Geprüfte Sorten / Stämme

Anbau Nr.	Kenn- Nr. BSA	Sortenname/ Sorten- bezeichnung	Тур	Züchter/ Sorteninhaber (Kurzform)	Anbau Nr.	Kenn- Nr. BSA	Sortenname/ Sorten- bezeichnung	Тур	Züchter/ Sorteninhaber (Kurzform)
1	0072	Danko	Populationssorte	KRUS	Wertpr	üfung			
2	0422	Esprit	Hybride	LOCH					
3	0511	Avanti	Hybride	HYBR	14	0065	Halo Vgl.	Populationssorte	LOCH
4	0577	Fernando	Hybride	LOCH	15	0889	PETR		PETR
5	0579	Nikita	Populationssorte	LOCH	16	0890	HYBR		HYBR
6	0647	Picasso	Hybride	LOCH	17	0894	HYBR		HYBR
7	0741	Matador	Populationssorte	PETR	18	0901	HYBR		HYBR
8	0751	Treviso	Hybride	LOCH	19	0903	HYBR		HYBR
9	0707	Boresto	Populationssorte	STEI					
10	0728	Walet	Populationssorte	DNKO/KRUS					
11	0801	Recrut	Populationssorte	LOCH					
12	0802	Carotop *	synthet. Sorte	EGER					
13	0803	Caroass	synthet. Sorte	EGER					

^{*} Carotop konnte wegen unzureichendem Feldaufgang nicht gewertet werden

ANSCHRIFTEN DER ZÜCHTER/SORTENINHABER:

DNKO - Firma Danko Hodowla Roslin, Sp. z.o.o., PL-640 05 RACOT

EGER - Erhardt Eger KG, Lübecker Straße 62-66, 23611 Bad Schwartau

HYBR - Hybro Saatzucht GmbH & Co. KG, 17291 Ludwigsburg

KRUS - Firma Kruse & Co., Schloßstraße 10-12, 32139 Spenge

LOCH - Firma Lochow-Petkus GmbH, Postfach 11 97, 29296 Bergen

PETR - Saatzucht P.H. Petersen, Streichmühler Straße, 24977 Lundsgaard

STEI - Saatzucht Steinach GmbH, Wittelsbacher Straße 15, 94377 Steinach

Standortbeschreibung und Anbaubedingungen

Lgj.Ja	ıhresm.	Höhe	Во	den	Bodenuntersuchung					Saat-	Aus-	
Nied. Schl.	mi.Tg. Temp.	über NN	Art	Zahl	Nmin kg/ha	P ₂ O ₅	K₂O	pH- Wert	Vorfrucht	stärke	saat	Ernte
mm	Cels				0-90cm	mg/10	00g Bd			Körn/m²	am	am
1002	7.9	537	sL	37	15	22	24	6.9	Wi.Weizen	330	02.10.	16.07.
664	7.5	410	IS	46	25	17	21	5.2	So.Gerste	260	10.10.	14.07.
890	8.2	360	sL	72	35	27	16	6.2	Wi.Gerste	300	01.10.	17.07.
672	7.6	430	IS	37	28	32	23	6.1	Wi.Weizen	300	30.09.	16.07.
680	6.4	500	sL	38	38	15	25	6.4	So.Gerste	300	01.10.	30.07.
679	7.7	443	IS	38	21	23	26	6.7	Silomais	250	01.10.	19.07.
644	9.0	280	tL	65	-	19	28	6.9	Wi.Weizen	270	24.09.	14.07.
	Schl. mm 1002 664 890 672 680 679	Schl. mm Temp. Cels 1002 7.9 664 7.5 890 8.2 672 7.6 680 6.4 679 7.7	Schl. mm Temp. Cels NN 1002 7.9 537 664 7.5 410 890 8.2 360 672 7.6 430 680 6.4 500 679 7.7 443	Schl. mm Temp. Cels NN Art 1002 7.9 537 sL 664 7.5 410 IS 890 8.2 360 sL 672 7.6 430 IS 680 6.4 500 sL 679 7.7 443 IS	Schl. mm Temp. Cels NN Art Zahl 1002 7.9 537 sL 37 664 7.5 410 IS 46 890 8.2 360 sL 72 672 7.6 430 IS 37 680 6.4 500 sL 38 679 7.7 443 IS 38	Schl. mm Temp. Cels NN Art Zahl kg/ha 0-90cm 1002 7.9 537 sL 37 15 664 7.5 410 IS 46 25 890 8.2 360 sL 72 35 672 7.6 430 IS 37 28 680 6.4 500 sL 38 38 679 7.7 443 IS 38 21	Schl. mm Temp. Cels NN Art Zahl kg/ha 0-90cm Mg/10 1002 7.9 537 sL 37 15 22 664 7.5 410 IS 46 25 17 890 8.2 360 sL 72 35 27 672 7.6 430 IS 37 28 32 680 6.4 500 sL 38 38 15 679 7.7 443 IS 38 21 23	Schl. mm Temp. Cels NN Art Zahl 0-90cm kg/ha 0-90cm mg/100g Bd 1002 7.9 537 sL 37 15 22 24 664 7.5 410 IS 46 25 17 21 890 8.2 360 sL 72 35 27 16 672 7.6 430 IS 37 28 32 23 680 6.4 500 sL 38 38 15 25 679 7.7 443 IS 38 21 23 26	Schl. mm Temp. Cels NN Art Zahl kg/ha 0-90cm mg/100g Bd Wert 1002 7.9 537 sL 37 15 22 24 6.9 664 7.5 410 IS 46 25 17 21 5.2 890 8.2 360 sL 72 35 27 16 6.2 672 7.6 430 IS 37 28 32 23 6.1 680 6.4 500 sL 38 38 15 25 6.4 679 7.7 443 IS 38 21 23 26 6.7	Schl. mm Temp. Cels NN Art Zahl 0-90cm kg/ha 0-90cm mg/100g Bd Wert Wert 1002 7.9 537 sL 37 15 22 24 6.9 Wi.Weizen 664 7.5 410 IS 46 25 17 21 5.2 So.Gerste 890 8.2 360 sL 72 35 27 16 6.2 Wi.Gerste 672 7.6 430 IS 37 28 32 23 6.1 Wi.Weizen 680 6.4 500 sL 38 38 15 25 6.4 So.Gerste 679 7.7 443 IS 38 21 23 26 6.7 Silomais	Schi. mm Temp. Cels NN Art Zahl kg/ha 0-90cm Log/ha mg/100g Bd Wert Wert Wert Wert Körn/m² 1002 7.9 537 sL 37 15 22 24 6.9 Wi.Weizen 330 664 7.5 410 IS 46 25 17 21 5.2 So.Gerste 260 890 8.2 360 sL 72 35 27 16 6.2 Wi.Gerste 300 672 7.6 430 IS 37 28 32 23 6.1 Wi.Weizen 300 680 6.4 500 sL 38 38 15 25 6.4 So.Gerste 300 679 7.7 443 IS 38 21 23 26 6.7 Silomais 250	Schl. mm Temp. Cels NN Art Zahl kg/ha 0-90cm Image: Cels mg/100g Bd Wert mg/100g Bd Wert wert wert Wert körn/m² am 1002 7.9 537 sL 37 15 22 24 6.9 Wi.Weizen 330 02.10. 664 7.5 410 IS 46 25 17 21 5.2 So.Gerste 260 10.10. 890 8.2 360 sL 72 35 27 16 6.2 Wi.Gerste 300 01.10. 672 7.6 430 IS 37 28 32 23 6.1 Wi.Weizen 300 30.09. 680 6.4 500 sL 38 38 15 25 6.4 So.Gerste 300 01.10. 679 7.7 443 IS 38 21 23 26 6.7 Silomais 250 01.10.

WP*: Orte mit integrierter Wertprüfung 3 (WP3)

Düngung und Pflanzenschutz

Versuchsorte		ngung /ha	Wachstumsregulator kg/ha, l/ha	Fungizide kg/ha, l/ha	Herbizide kg/ha, l/ha
	Stufe 1	Stufe 2	Stufe 2	Stufe 2	Stufe 1 + 2
Haar	105	135	Terpal C 1.5 ES 39-47	Folicur 1.0 ES 65-69	Bacara 1.0 ES 11-12
Schrobenhausen	70	100	Terpal C 1.5 ES 37-49	Juwel Top 1.0 ES 59	AZUR 2.5 ES 27-29 PRIMUS 0.08 ES 27-29
Rotthalmünster	110	150	Terpal C 0.75 CCC 720 1.0	HARVESAN 0.8 CADDY 100 SL 0.8	PICO 0.125 Cadou 0.250
Almesbach	70	100	Terpal C 1.5 ES 55-59	Folicur 0.8 ES 55-59	AZUR 2.5 ES 21 Hoestar 0.020 ES 21
Oschwitz	120	160	Terpal C 1.5 ES 37	Juwel Top 0.7 ES 51-55	Husar 0.2 ES 27-30 Hoestar Super 0.1 ES 27-30
Großbreitenbronn	130	160	Terpal C 0.5 ES 41-47	Folicur 1.0 ES 55-59	Hoestar Super 0.2 ES 25
Arnstein	90	130	CCC 720 1.25 ES 31-32 Terpal C 0.8 ES 49	Folicur 1.0 ES 55-65	AZUR 2.0 ES 27 Hoestar 0.02 ES 27

Kommentar

Versuchsbedingungen

In den bayerischen Landessortenversuchen 2002/2003 wurden 13 Roggensorten (5 Hybriden, 6 Populationssorten und 2 synthetische Sorten) in jeweils zwei unterschiedlichen Intensitätsstufen geprüft. Eine der beiden synthetischen Sorten (Carotop) zeigte aufgrund von Saatgutmängeln so starke Auflaufprobleme, dass die Sorte nicht gewertet werden konnte.

Gegenüber der Ernte 2002 nicht mehr geprüft wurde die Hybridsorte Gamet und die synthetische Sorte Cilion. Neu in der Prüfung standen die synthetischen Sorten Caroass und Caratop sowie die Populationssorte Recrut.

Die Landessortenversuche Winterroggen wurden an 7 Standorten angelegt, die alle ein verwertbares Ergebnis lieferten.

An vier Standorten wurde das Sortiment der Wertprüfung 3 des Bundessortenamtes integriert. Dazu wurde gegenüber dem LSV zusätzlich eine Vergleichssorte und fünf WP-3-Stämme geprüft. Die Option einer EU-Sortenprüfung Winterroggen, die in Bayern an einem Standort vorgesehen ist, wurde nicht in Anspruch genommen.

Sortenleistung

Relativertrag 2003 in Klammern

<u>Hybridsorten</u>

Auch 2003 erzielte Avanti (Hybro/Saaten-Union, 109) den höchsten Ertrag. Unübertroffen ist die Ertragstreue der Sorte, die bei knapp mittlerer Standfestigkeit mit einer guten Kornqualität, günstigen Amylogrammwerten und mit hohen Fallzahlen aufwartet. Die etwas höhere Anfälligkeit für Braunrost ist zu beachten.

Esprit (Lochow-Petkus, 109) hat als älteste Hybride im Sortiment nichts an Aktualität eingebüßt. Er konnte im Relativertrag sogar noch einmal zulegen. Wegen seiner Anfälligkeit für Braunrost und Lager stellt Esprit zwar höhere Ansprüche an die Bestandesführung, bringt dafür aber hohe Fallzahlen und für eine Hybridsorte wenig Mutterkorn.

Fernando (Lochow-Petkus, 108) kommt bei niedrigem Ertragsniveau ganz nahe an die Spitzensorten heran. Sein Vorzug ist eine gute Verarbeitungsqualität, er bringt hohe Fallzahlen und gute Amylogrammwerte. Gegen Braunrost ist er etwas anfälliger.

Treviso (Lochow-Petkus, 105) ist standfest und besitzt durchschnittliche Resistenz- und Qualitätseigenschaften mit der für Hybriden typischen höheren Braunrostanfälligkeit.

Picasso (Lochow-Petkus, 101) ist im Relativertrag etwas abgefallen. Ein Zusammenhang mit der kurzen Wuchslänge ist dabei nicht auszuschließen. Konkurrenzeffekte längerwüchsiger Sorten in Nachbarparzellen können einige Ertragsprozente kosten. Aus diesem Grund wird im Versuch 2003/2004 eine Randomisation nach Wuchslänge auch bei Roggen eingeführt. Picasso bietet eine relativ gute Standfestigkeit, einen vergleichsweise geringen Mutterkornbefall und gute Qualitätswerte mit hohen Fallzahlen.

Synthetische Sorten

Synthetische Sorten werden durch die Kombination verschiedener, definierter Zuchtkomponenten und anschließende gemeinsame Vermehrung hergestellt. Eine synthetische Sorte ist im Gegensatz zur Populationssorte noch nicht im genetischen Gleichgewicht. Die einzelnen Generationen bzw. Vermehrungsstufen können sich daher in Aussehen und Leistung unterscheiden. Bei den derzeit angebotenen synthetischen

Roggensorten können auch pollensterile Linien enthalten sein, so dass die Pollendichte insgesamt geringer sein kann als bei Hybrid- oder Populationssorten. Dies hat sich in der Vergangenheit durch höhere Mutterkorngehalte gezeigt. Aufgrund der Unterschiedlichkeit der Saatgutgenerationen ist bei der Versuchsanstellung die Frage nach dem Vermehrungsstatus von entscheidender Bedeutung. Wenn die Vermehrungsgeneration bei Versuchs- und Verkaufssaatgut nicht identisch ist, kann vom Versuchsergebnis nur schwer auf die Leistungsfähigkeit des Praxissaatguts geschlossen werden.

Zur Ernte 2003 waren mit Caroass und Carotop zwei synthetische Sorten in der Prüfung. Aufgrund von Saatgutmängeln konnte die Sorte Carotop aber nicht gewertet werden.

Caroass (Eger, 104) erzielte in den Versuchen eine gute Ertragsleistung. Die Sorte zeigte in den bayerischen Versuchen eine mittlere Standfestigkeit und eine Anfälligkeit gegen Braunrost, die auf dem hohen Niveau von Hybridsorten lag.

<u>Populationssorten</u>

Nikita (Lochow-Petkus, 97) hat sich bei dem niedrigen Ertragsniveau dieses Jahres gut plazieren können. Er ist relativ standfest und gesund, in der Qualität aber nur Durchschnitt.

Recrut (Lochow-Petkus, 97) ist eine neue Sorte mit mittleren bis guten Resistenzeigenschaften und guter Ertragsleistung. Gegenüber der Sorte Nikita aus dem gleichen Haus bringt er Vorteile bei den Amylogrammwerten.

Boresto (Saatzucht Steinach/BayWa, 95) ist ein klassisch-extensiver Typ mit sehr langem Stroh, mäßiger Standfestigkeit, der besten Rostresistenz im Prüfsortiment und durchschnittlichen Qualitätseigenschaften.

Matador (Petersen/Saaten-Union, 95) zeigte eine konstante Ertragsleistung bei problemlosen Anbaueigenschaften und durchschnittlichen Resistenzen.

Walet (Kruse, 91) besitzt eine gute Standfestigkeit und eine geringe Braunrostanfälligkeit. Die Qualitätseigenschaften sind mittel.

Danko (Kruse, 90) ist standfest, recht widerstandsfähig gegen Braunrost, aber etwas stärker anfällig für Rhynchosporium. Er besitzt ein großes Korn, knappe Fallzahlen bergen aber ein höheres Qualitätsrisiko.

Sortenwahl

Auch im Extremjahr 2003 konnten die Hybridsorten ihre Überlegenheit unter Beweis stellen. Die Populationssorten haben auch im extensiven Anbau keine besonderen Vorteile gegenüber den Hybriden. Der Mehrertrag der Hybridsorten gleicht den Saatgutmehrpreis normalerweise aus. Einziges Argument für Populationssorten – von Nischenproduktion abgesehen – bleibt der Mutterkornbesatz. Hier bieten die "echten" Populationssorten tatsächlich Vorteile.

Hybridsorten lohnen sich im Normalfall auf allen Roggenstandorten. Nachdem das Saatgut generell mit einem Zusatz an Populationsroggen geliefert wird, wird das Mutterkornrisiko gesenkt, es sollte daher kein zusätzlicher Mischpartner eingesetzt werden. Bei Hybridroggen ist grundsätzlich die z.T. höhere Anfälligkeit für Braunrost zu beachten. Die Bekämpfung ist normalerweise recht preiswert möglich und in der Regel hochrentabel, wenn sie rechtzeitig zu Befallsbeginn erfolgt.

Populationssorten sind nur für den ausgesprochen extensiven Anbau mit bewusstem Verzicht auf intensive Düngung und Pflanzenschutzmittel zu empfehlen, insbesondere im Vertragsanbau. In der Saatgutproduktion spielen Populationssorten weiter eine wichtige Rolle, weil sie als Mischungspartner für das Hybridsaatgut benötigt werden.

Intensitätsstufen

Die Roggenversuche werden seit der Ernte 2001 nur noch in zwei Intensitätsstufen durchgeführt. Dafür liefern drei Wiederholungen eine

bessere statistische Absicherung der Ergebnisse. Dies hat sich angesichts der schwierigen Versuchsbedingungen zur Ernte 2003 als besonders vorteilhaft herausgestellt. Die faktorielle Abstufung bringt in erster Linie zusätzliche Prüfumwelten. Dabei dient die extensive Stufe 1 der Beurteilung der Sortenresistenz und der Standfestigkeit, während die intensive Stufe 2 die Ertragsleistung der Sorten unter intensiven Anbaubedingungen testet und die Bedingungen optimaler landwirtschaftlicher Anbaupraxis widerspiegelt. Für die praktische Beratung ist der Vergleich der Sortenleistung im Durchschnitt der Behandlungsstufen in aller Regel realistischer als die alleinige Verwendung der "intensiven" Ergebnisse, weil in der Praxis die Bestände aus arbeitswirtschaftlichen Gründen nicht immer optimal geführt werden können.

Stufe 1 = extensiv; um 30% reduzierte N-Düngung, ohne Wachstumsregler, ohne Fungizide

Stufe 2 = intensiv; optimale N-Düngung, mit Wachstumsregler Terpal C, Fungizide gezielt nach Bedarf

Die Stickstoffdüngung lag zur Ernte 2003 aufgrund der noch niedrigeren N_{min} -Werten geringfügig über dem Niveau des Vorjahres. Die Stufe 1 wurde durchschnittlich mit 99 kg N/ha gedüngt (von 70 kg N/ha in Schrobenhausen und Almesbach bis 130 kg N/ha in Großbreitenbronn), in Stufe 2 lag die N-Düngung im Mittel bei 133 kg N/ha (von 100 kg N/ha in Schrobenhausen bis 160 kg N/ha in Großbreitenbronn und Oschwitz). Die mittlere N-Steigerung in Stufe 2 lag somit bei 34 kg N/ha.

Die Wachstumsreglerbehandlung erfolgte mit Ausnahme von Rotthalmünster und Arnstein in Form einer einmaligen Terpal C – Anwendung. In Rotthalmünster und in Arnstein kam eine Spritzfolge aus CCC und Terpal C zum Einsatz. Moddus wurde nicht angewendet. Beim Fungizideinsatz lag der Schwerpunkt auf einer einmaligen Azol-Behandlung. Lediglich in Schrobenhausen (1,0 l/ha) und Oschwitz (0,7 l/ha)

wurde mit Juwel top ein Strobilurinpräparat in verminderter Aufwandmenge eingesetzt. Der geringe Krankheitsdruck spiegelte sich somit im verminderten Fungizidaufwand der Versuchsansteller wider.

Im Mittel der Versuche wurde in der intensiven Stufe gegenüber extensiv nur ein Mehrertrag von 6,1 dt/ha erzielt, das sind 8 dt/ha weniger als im Vorjahr. Den höchsten Mehrertrag mit 9,9 dt/ha hatte der Standort Rotthalmünster zu verzeichnen. Der niedrigste Mehrertrag wurde mit 1,4 dt/ha in Oschwitz festgestellt. Der Witterungsverlauf hatte wegen der allgemeinen Begrenzung des Ertragspotenzials und dem geringen Krankheitsauftreten nichts anderes erwarten lassen. Durch den geringeren Aufwand für Wachstumsregler und Fungizide (und wegen der vom ILB wieder niedriger als bisher angesetzten Ausbringkosten für Düngemittel und PSM) lagen die durchschnittlichen Mehrkosten in Stufe 2 bei 94 €/ha. Damit ist bei einem kalkulatorischen Roggenpreis von 10,90 €/dt kein Mehrerlös möglich gewesen. Die Mindererlöse lagen mit Mittel bei 28 €/ha, die Bandbreite reichte von 9 €/ha in Rotthalmünster bis zu 55 €/ha in Großbreitenbronn.

Kornertrag relativ, Sorten und Orte

Sorten (*nicht in Bezugsbasis)	Haar	Schroben- hausen	Almes- bach	Groß- breiten- bronn	Rotthal- münster	Oschwitz	Arnstein	WP3 - Mittel 4 Orte	Mittel 7 Orte
Hybridsorten									
Avanti	106	115	110	107	104	109	111	110	109
Esprit	103	112	108	108	112	108	109	108	109
Fernando	104	114	108	108	109	105	107	109	108
Picasso	99	109	105	98	96	100	102	103	101
Treviso	110	108	106	104	100	104	106	107	105
synthetische Sor	ten								
Caroass	100	108	105	104	106	101	106	105	104
Populationssorte	n								
Boresto	97	90	93	97	96	95	97	94	95
Danko	94	83	92	88	92	95	88	89	90
Matador	95	95	94	96	93	96	94	95	95
Nikita	97	88	95	97	105	98	96	94	97
Recrut	102	93	96	97	98	94	97	97	97
Walet	95	86	87	96	91	96	88	91	91
Wertprüfung									
Halo*	97	80	85	94				89	
PETR 00889*	98	87	92	96				93	
HYBR 00890*	108	116	113	109				112	
HYBR 00894*	104	109	110	110				109	
HYBR 00901*	98	113	108	100				105	
HYBR 00903*	101	93	97	101				98	
Mittel	56.5	64.6	67.9	63.0	73.2	79.3	70.5	63.0	67.8

Kornertrag absolut, Sorten und Behandlungen

Sorten	Mittel	7 Orte	WP 3-Mit	tel 4 Orte
(*nicht in Bez.basis)	Stufe 1	Stufe 2	Stufe 1	Stufe 2
Hybridsorten				
Avanti	70.8	76.7	67.0	71.1
Esprit	69.6	77.7	63.8	71.9
Fernando	70.8	75.6	67.3	69.6
Picasso	66.3	70.8	63.5	65.9
Treviso	67.8	74.8	65.1	69.6
synthetische Sorter	า			
Caroass	68.2	73.6	64.0	67.8
Populationssorten				
Boresto	60.6	68.3	56.0	62.6
Danko	58.4	64.0	54.8	57.1
Matador	61.8	66.5	58.5	61.2
Nikita	62.3	69.0	57.2	61.7
Recrut	62.7	68.4	58.9	63.0
Walet	58.3	65.4	53.8	60.4
Wertprüfung				
Halo*			52.2	59.5
PETR 00889*			55.8	61.4
HYBR 00890*			68.8	71.9
HYBR 00894*			65.8	71.0
HYBR 00901*			64.0	68.3
HYBR 00903*			58.6	64.6
Mittel	64.8	70.9	60.8	65.2

Stufe 1 bis Stufe 2: Behandlungen, siehe Versuchsbeschreibung

Kornertrag relativ, Sorten 2003 und mehrjährig, adjustierte Mittelwerte, Mittelwerttest (SNK, P=5 %)

Sorten	2003	SNK 5 %
Avanti	109	А
Esprit	109	A
Fernando	108	А
Treviso	105	AB
Caroass	104	AB
Picasso	101	ВС
Nikita	97	CD
Recrut	97	CD
Boresto	95	DE
Matador	95	DE
Walet	91	Е
Danko	90	Е
Mittel	67.9	
Anzahl Orte	7	

Sorten	mehrjährig	SNK 5 %
abschließende Bew	ertung nach drei I	Prüfjahren
Avanti	110	Α
Esprit	108	В
Fernando	107	В
Treviso	106	ВС
Picasso	105	BC
Matador	96	D
Nikita	95	D
Danko	90	Е
vorläufige Bewertur	ng nach zwei Prüfj	ahren
Caroass	104	С
Recrut	96	D
Boresto	94	D
Walet	91	Е
Mittel	75.6	
Anzahl Orte	19	

Kornertrag absolut, Sorten und Behandlungen, mehrjährig

Sorten	2002-	-2003	2001-	-2003
Sorten	Stufe 1	Stufe 2	Stufe 1	Stufe 2
Hybridsorten				
Avanti	75.4	85.0	77.1	89.7
Esprit	72.7	85.6	73.4	89.4
Fernando	73.5	83.1	74.1	87.2
Picasso	71.0	80.1	73.5	85.4
Treviso	72.3	83.8	73.4	86.9
Popoulationssor	ten			
Boresto	63.5	73.6		
Danko	61.7	70.7	62.7	73.8
Matador	65.8	74.3	67.3	78.6
Nikita	64.7	74.2	65.3	77.8
Walet	61.6	70.6		
Mittel	68.2	78.1	70.8	83.6
Anzahl Orte	13	13	19	19

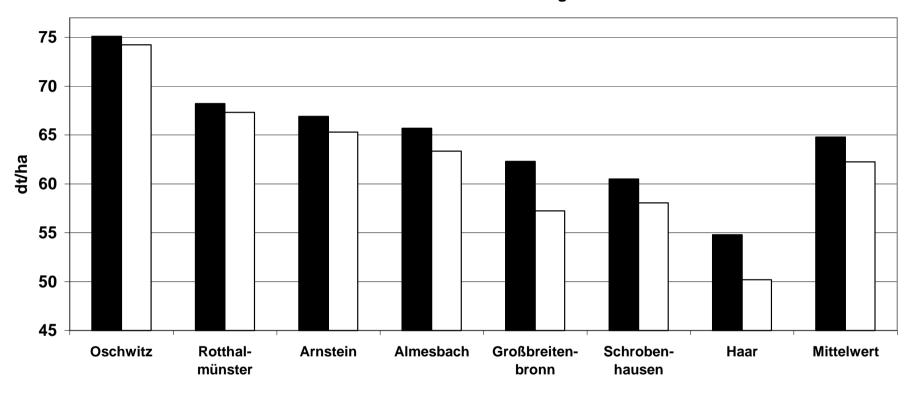
Stufe 1 bis Stufe 2: Behandlungen, siehe Versuchsbeschreibung

Kornertrag absolut, Sorten, Orte und Behandlungen

Sorte		Haar		Schr	obenha	usen	Al	lmesba	ch	Groß	breitenl	bronn	Rott	halmür	ster	(Oschwi	tz	1	Arnsteir	n
Sorte	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel	St 1	St 2	Mittel
Hybridsorten																					
Avanti	57.7	61.7	59.7	71.6	76.9	74.2	72.1	77.7	74.9	66.8	68.1	67.4	70.5	81.3	75.9	81.7	90.5	86.1	75.5	80.3	77.9
Esprit	55.2	60.7	58.0	67.2	77.5	72.3	69.1	77.5	73.3	63.9	72.0	68.0	76.6	86.6	81.6	82.1	89.5	85.8	73.2	80.2	76.7
Fernando	56.6	61.1	58.8	72.8	74.4	73.6	72.5	74.6	73.6	67.3	68.4	67.8	75.5	84.4	79.9	78.7	88.1	83.4	72.0	78.2	75.1
Picasso	54.9	56.5	55.7	66.1	74.1	70.1	69.2	73.4	71.3	63.8	59.7	61.7	64.7	75.3	70.0	76.3	82.2	79.2	69.0	74.3	71.7
Treviso	60.1	64.5	62.3	64.2	74.9	69.6	70.7	73.2	72.0	65.4	65.7	65.5	67.2	78.5	72.8	75.8	88.4	82.1	71.0	78.5	74.7
synthetische S	orten																				
Caroass	55.5	57.6	56.6	66.2	73.1	69.6	69.7	73.6	71.7	64.5	67.0	65.8	74.9	80.6	77.7	76.7	83.4	80.0	69.7	80.0	74.8
Populationssor	rten																				
Boresto	51.9	57.1	54.5	51.9	64.4	58.2	59.8	66.9	63.4	60.4	62.1	61.3	65.0	76.0	70.5	70.8	80.4	75.6	64.6	71.5	68.1
Danko	51.4	54.3	52.8	49.5	57.5	53.5	62.3	62.2	62.3	55.8	54.6	55.2	59.2	75.6	67.4	71.7	78.8	75.3	58.8	64.7	61.8
Matador	53.2	54.4	53.8	59.0	63.5	61.2	62.3	64.9	63.6	59.7	61.8	60.8	64.9	70.7	67.8	71.2	80.6	75.9	62.5	69.6	66.0
Nikita	54.8	54.8	54.8	52.9	60.8	56.8	61.8	67.9	64.9	59.2	63.1	61.1	71.0	82.5	76.7	73.2	81.5	77.4	63.2	72.6	67.9
Recrut	56.1	58.6	57.3	54.1	66.0	60.0	62.5	68.2	65.4	63.0	59.2	61.1	67.0	76.0	71.5	71.3	78.0	74.7	64.7	72.4	68.5
Walet	50.4	56.4	53.4	50.5	60.9	55.7	56.2	62.0	59.1	58.1	62.4	60.2	62.4	70.1	66.3	71.7	80.2	75.9	58.9	65.8	62.4
Wertprüfung																					
Halo*	54.0	56.0	55.0	45.5	57.3	51.4	52.1	63.8	57.9	57.1	60.7	58.9			-						
PETR 00889*	54.4	56.3	55.4	52.3	60.4	56.3	58.1	66.6	62.4	58.5	62.2	60.4									
HYBR 00890*	60.2	61.5	60.9	71.7	78.2	74.9	75.2	79.0	77.1	67.9	68.8	68.4			-						
HYBR 00894*	56.7	61.1	58.9	64.3	76.5	70.4	73.0	76.9	74.9	69.1	69.7	69.4									
HYBR 00901*	52.8	57.4	55.1	68.8	77.4	73.1	70.1	76.7	73.4	64.4	61.5	63.0									
HYBR 00903*	55.1	59.0	57.1	55.9	64.8	60.3	60.9	70.5	65.7	62.7	64.2	63.4									
Mittel	54.8	58.1	56.5	60.5	68.7	64.6	65.7	70.2	67.9	62.3	63.7	63.0	68.2	78.1	73.2	75.1	83.5	79.3	66.9	74.0	70.5

Stufe 1 bis Stufe 2: Behandlungen, siehe Versuchsbeschreibung

Rentabilität des Produktionsmitteleinsatzes

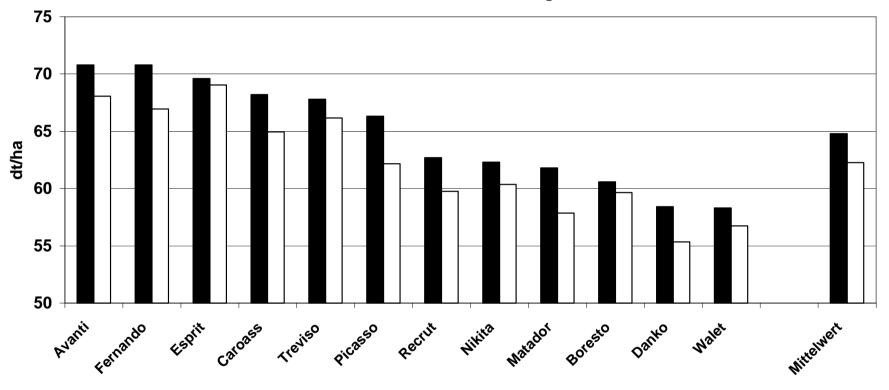

			Stufe 1			Veränderung des Ertrags bzw. Erlöses Stufe 2 = zusätzlicher N-, WR und Fungizid-Einsatz											
					N-Dünç	N-Düngung		WR			zideinsatz T				N 4 - I	Mehr	
Versuchsort	Vorfrucht	Nmin	N kg/ha	Ertrag dt/ha	N zusätzlich kg/ha	Eig.M. €	Mittel	Aufwand Menge Itr/ha	Eig.M. €	Mittel	Aufwand Menge Itr/ha	Eig.M. €	Mehr Ertrag dt/ha	Ertrag dt/ha St. 2	Mehr Aufwand € zu St.1	menr Erlös <i>€</i> ha zu St.1	
Haar	Winterweizen	15	105	54.8	30		Terpal C	1.50	4.80	Folicur	1.0	4.80	3.3	58.1	86.05	-50.08	
Schrobenhausen	Sommergerste	25	70	60.5	30	4.10	Terpal C	1.50	4.80	Juwel Top	1.0	4.80	8.2	68.7	115.85	-26.47	
Rotthalmünster	Wintergerste	35	110	68.2	40	4.10	CCC 720 Terpal C	1.00 0.75	4.80 4.80	Harvesan Caddy 100 SL	0.8 0.8	4.80	9.9	78.1	117.34	-9.43	
Almesbach	Winterweizen	28	70	65.7	30		Terpal C	1.50	4.80	Folicur	0.8		4.5	70.2	74.63	-25.58	
Oschwitz	Sommergerste	38	120	75.1	40		Terpal C	1.50	4.80	Juwel Top	0.7	4.80	8.4	83.5	100.81	-9.25	
Großbreitenbronn	Silomais	21	130	62.3	30		Terpal C	0.50	4.80	Folicur	1.0	4.80	1.4	63.7	70.55	-55.29	
Arnstein	Winterweizen		90	66.9	40	4.10	CCC 720 Terpal C	1.25 0.80	4.80 4.80	Folicur	1.0	4.80	7.1	74.0	94.86	-17.47	
Durchschnitt			99	64.8	34								6.1	70.9	94.30	-27.65	

Winterroggenpreis: 10,90 €/ dt

Produktionsmittelpreise und Ausbringungskosten nach ILB München, unterstellt ist Eigenmechanisierung

Quelle: LBP IPZ 2a, Sortiment 072/2003, Mittel aus 12 Sorten

Kornertrag in 2 Intensitätsstufen bei Winterroggen 2003 Stufe 2 kostenbereinigt

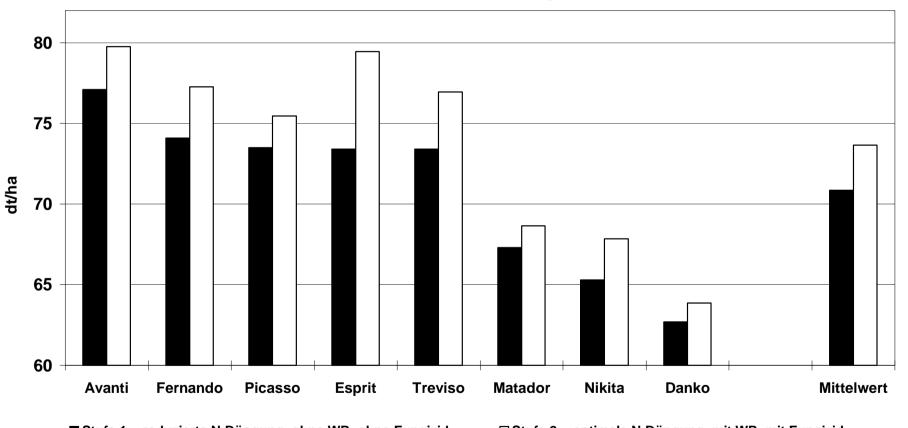


■ Stufe 1 = reduzierte N-Düngung, ohne WR, ohne Fungizid

LSV 072, Mittel aus 12 Sorten

[☐] Stufe 2 = optimale N-Düngung, mit WR, mit Fungizid

Kornertrag in 2 Intensitätsstufen bei Winterroggen 2003 Stufe 2 kostenbereinigt



■ Stufe 1 = reduzierte N-Düngung, ohne WR, ohne Fungizid

☐ Stufe 2 = optimale N-Düngung, mit WR, mit Fungizid

LSV 072, Mittel aus 7 Orten

Kornertrag in 2 Intensitätsstufen bei Winterroggen 2001 - 2003 Stufe 2 kostenbereinigt

■ Stufe 1 = reduzierte N-Düngung, ohne WR, ohne Fungizid

☐ Stufe 2 = optimale N-Düngung, mit WR, mit Fungizid

LSV 072, Mittel aus 19 Orten

Beobachtungen und Feststellungen

Sorte	laba	Pflanz	zenlän	ge cm	Ähren pro m²			Mängel nach vor		Lager vor Reife			Halmknicken			Zw	riewuc	hs	Br	raunro	st	Rhynchosporium			
	Jahr	St 1	St 2	MW	St 1	St 2	MW	Winter	Reife MW	St 1	St 2	MW	St 1	St 2	MW	St 1	St 2	MW	St 1	St 2	MW	St 1	St 2	MW	
Avanti	2001	147	133	140	512	539	526	1.3	2.2	5.9	3.9	4.9							5.5	2.0	3.8	2.9	2.1	2.5	
	2002	148	135	142	461	484	473	1.6	2.2	4.5	5.0	4.8							3.7	1.9	2.8	4.1	2.8	3.4	
	2003	123	118	121	489	512	500	2.3	2.5	3.3	3.3	3.3	2.5	2.3	2.4	4.7	5.0	4.8	2.5	1.5	2.0	3.2	2.8	3.0	
	MW	139	129	134	488	512	500	1.7	2.3	4.6	4.1	4.3	2.5	2.3	2.4	4.7	5.0	4.8	3.9	1.8	2.9	3.4	2.6	3.0	
Danko	2001	157	144	150	433	472	453	1.5	2.8	3.9	2.9	3.4							4.4	1.4	2.9	3.7	2.7	3.2	
	2002	160	150	155	478	486	482	1.8	2.0	2.1	1.6	1.9							2.7	1.5	2.1	4.7	2.9	3.8	
	2003	139	133	136	447	436	441	2.5	3.8	1.7	1.5	1.6	2.3	2.2	2.3	2.0	2.3	2.2	2.1	1.5	1.8	3.5	3.1	3.3	
	MW	152	142	147	453	465	459	1.9	2.9	2.6	2.0	2.3	2.3	2.2	2.3	2.0	2.3	2.2	3.1	1.5	2.3	3.9	2.9	3.4	
Esprit	2001	148	139	143	501	583	542	1.5	2.4	6.1	5.2	5.6							5.8	2.0	3.9	2.8	2.2	2.5	
	2002	149	141	145	462	570	516	1.7	2.0	4.1	4.8	4.4							3.7	1.7	2.7	4.0	2.9	3.4	
	2003	130	125	127	498	536	517	2.2	3.3	2.7	2.9	2.8	2.5	2.0	2.3	3.7	5.0	4.3	2.5	1.2	1.9	3.4	2.8	3.1	
	MW	142	135	138	487	563	525	1.8	2.6	4.3	4.3	4.3	2.5	2.0	2.3	3.7	5.0	4.3	4.0	1.7	2.8	3.4	2.6	3.0	
Fernando	2001	143	133	138	467	508	488	1.5	2.7	5.2	3.6	4.4							5.6	2.1	3.8	3.3	2.5	2.9	
	2002	144	137	141	438	481	459	1.7	1.8	3.8	4.1	3.9							3.8	1.9	2.9	3.8	3.0	3.4	
	2003	123	118	120	514	515	514	2.1	3.2	2.3	2.0	2.2	1.5	1.2	1.3	4.3	4.0	4.2	2.8	1.5	2.1	3.3	2.5	2.9	
	MW	137	129	133	473	501	487	1.8	2.6	3.8	3.2	3.5	1.5	1.2	1.3	4.3	4.0	4.2	4.1	1.8	2.9	3.5	2.7	3.1	
Matador	2001	151	137	144	483	512	497	1.6	3.0	5.2	3.8	4.5							5.1	1.7	3.4	3.1	2.3	2.7	
	2002	155	144	149	436	496	466	2.0	1.8	3.9	3.8	3.9							3.6	1.6	2.6		3.1	3.6	
	2003	133	125	129	449	523	486	2.8	4.3	2.9	2.6	2.7	2.5	2.0	2.3	4.0	4.0	4.0	2.3	1.4	1.8	3.8	3.0	3.4	
	MW	146	135	141	456	510	483	2.2	3.1	4.0	3.4	3.7	2.5	2.0	2.3	4.0	4.0	4.0	3.6	1.6	2.6	3.6	2.8	3.2	
Nikita	2001	154	140	147	468	548	508	1.6	2.9	5.3	4.1	4.7							3.8	1.6	2.7	3.2	2.7	2.9	
	2002	158	148	153	460	516	488	1.8	2.0	3.9	3.1	3.5							3.2	1.4	2.3	4.6	3.4	4.0	
	2003	140	132	136	420	451	436	2.5	3.8	2.8	2.4	2.6	3.5	2.2	2.8	4.0	4.3	4.2	2.1	1.5	1.8	3.9	2.8	3.4	
	MW	151	140	145	449	505	477	2.0	2.9	4.0	3.2	3.6	3.5	2.2	2.8	4.0	4.3	4.2	3.0	1.5	2.3	3.9	3.0	3.4	
Picasso	2001	141	128	135	488	515	502	1.3	2.8	5.7	3.8	4.8							5.2	1.7	3.4	2.9	2.3	2.6	
	2002	141	129	135	504	507	505	1.5	1.7	4.0	3.2	3.6							3.6	1.6	2.6		2.6	3.4	
	2003	120	112	116	484	581	533	2.3	3.0	1.8	1.1	1.4	1.7	1.0	1.3	4.3	4.7	4.5	2.5	1.4	2.0		2.4	2.9	
	MW	134	123	129	492	534	513	1.7	2.5	3.8	2.7	3.3	1.7	1.0	1.3	4.3	4.7	4.5	3.8	1.6	2.7	3.5	2.4	3.0	
Treviso	2001	146	135	141	467	538	502	1.6	3.3	5.1	3.3	4.2							5.5	1.6	3.6	2.7	2.2	2.4	
	2002	145	136	141	517	528	522	1.8	1.8	3.2	2.3	2.8							3.9	1.7	2.8	4.1	2.8	3.4	
	2003	125	120	122	455	461	458	2.7	4.2	1.9	1.3	1.6	2.3	1.3	1.8	4.0	5.0	4.5	2.6	1.5	2.0	_	2.8	3.3	
	MW	139	131	135	480	509	494	2.0	3.1	3.4	2.3	2.9	2.3	1.3	1.8	4.0	5.0	4.5	4.0	1.6	2.8	3.5	2.6	3.0	

Beobachtungen und Feststellungen - Fortsetzung

Sorte		Pflanzenlänge cm			Ähren pro m²			Mär nach	ngel vor	vor Lager vor Reife			Halmknicken			Zw	iewuc	hs	Br	aunro	st	Rhynchosporium			
	Jahr								Reife																
Damasta		St 1	St 2	MW	St 1	St 2	MW	MW	MW	St 1	St 2	MW	St 1	St 2	MW	St 1	St 2	MW	St 1	St 2	MW	St 1	St 2	MW	
Boresto	2002	167	159	163	514	475	495	1.8	2.0	5.1	3.9	4.5							2.6	1.3	1.9	4.4	3.3	3.9	
	2003	146	141	143	404	466	435	2.2	3.0	3.9	3.5	3.7	3.5	3.3	3.4	3.0	4.3	3.7	1.8	1.4	1.6	3.6	2.7	3.2	
	MW	156	150	153	459	470	465	2.0	2.5	4.5	3.7	4.1	3.5	3.3	3.4	3.0	4.3	3.7	2.2	1.3	1.8	4.0	3.0	3.5	
Caroass	2001	149	135	142	451	545	498	1.9		5.1	3.4	4.3							5.6	1.7	3.6	3.3	2.0	2.7	
	2003	131	124	127	519	545	532	2.4	4.2	2.8	2.6	2.7	2.7	2.3	2.5	4.0	5.0	4.5	2.5	1.5	2.0	3.6	2.6	3.1	
Deamit	MW	140 149	129	135	485 442	545 482	515	2.2	4.2	4.0 5.0	3.0	3.5	2.7	2.3	2.5	4.0	5.0	4.5	4.1	1.6	2.8 3.3	3.5	2.3	2.9	
Recrut	2001 2003	135	138 130	143 133	442 454	500	462 477	2.0 2.6		2.8	3.8 2.2	4.4 2.5	2.8	2.5	2.7	3.7	3.7	3.7	5.0 2.0	1.6 1.3	3.3 1.7	2.3 3.4	2.0 2.8	3.1	
	MW	142	134	138	448	491	469	2.6	3.8	3.9	3.0	3.4	2.8	2.5	2.7	3.7	3.7	3.7	3.5	1.4	2.5	2.9	2.4	2.6	
Walet	2002	160	144	152	433	449	441	2.2	2.2	3.2	1.9	2.5	2.0	2.5	2.1	3.1	3.1	3.7	2.5	1.3	1.9	4.4	3.2	3.8	
Walet	2002	137	129	133	416	455	436	2.7	4.5	1.6	1.2	1.4	2.2	2.0	2.1	2.3	3.3	2.8	2.0	1.3	1.6	3.5	2.8	3.2	
	MW	149	136	143	425	452	438	2.4	3.3	2.4	1.5	2.0	2.2	2.0	2.1	2.3	3.3	2.8	2.2	1.3	1.8	4.0	3.0	3.5	
Mitttel	2001	148	136	142	471	524	498	1.6		5.3	3.8	4.5				2.0	0.0	2.0	5.1	1.7	3.4	3.0	2.3	2.7	
Haupt-	2002	153	142	148	470	499	485	1.8	2.0	3.8	3.4	3.6							3.3	1.6	2.5	4.2	3.0	3.6	
sortiment	2003	132	125	129	463	498	480	2.4	3.6	2.5	2.2	2.4	2.5	2.0	2.3	3.7	4.2	3.9	2.3	1.4	1.9	3.5	2.8	3.1	
	MW	144	134	139	468	507	487	2.0	2.9	3.8	3.1	3.4	2.5	2.0	2.3	3.7	4.2	3.9	3.5	1.6	2.5	3.6	2.7	3.1	
Wertprüfung																									
Halo*	2001	150	142	146	517	481	499	2.2	3.7	5.2	3.9	4.6							6.2	1.7	3.9	2.2	2.2	2.2	
	2002	158	149	153	499	526	512	2.1		5.7	5.7	5.7							3.8	1.4	2.6	4.8	2.7	3.8	
	2003	130	127	128	419	426	422	3.4	3.8	4.3	3.1	3.7	3.8	3.7	3.8	3.0	3.7	3.3	2.2	1.3	1.7	2.7	2.0	2.3	
	MW	146	139	143	478	478	478	2.6	3.8	5.1	4.2	4.7	3.8	3.7	3.8	3.0	3.7	3.3	4.1	1.4	2.7	3.2	2.3	2.8	
PETR 00889*	2003	135	128	131	417	451	434	3.1	3.8	2.7	2.0	2.3	3.0	2.5	2.8	3.7	3.7	3.7	2.0	1.0	1.5	3.3	2.3	2.8	
HYBR 00890*	2003	117	114	115	447	441	444	2.3	2.8	2.2	1.4	1.8	2.5	1.7	2.1	5.0	4.7	4.8	1.8	1.1	1.4	3.3	2.7	3.0	
HYBR 00894*	2003	122	116	119	502	456	479	1.9	3.0	2.9	2.3	2.6	3.5	2.5	3.0	5.0	5.0	5.0	1.4	1.0	1.2	2.7	2.0	2.3	
HYBR 00901*	2003	117	110	113	393	414	404	2.5	3.2	1.8	1.9	1.8	1.5	1.0	1.3	4.7	5.0	4.8	1.4	1.0	1.2	2.7	2.3	2.5	
HYBR 00903*	2003	126	122	124	452	515	484	2.3	3.7	2.6	1.7	2.1	2.7	2.5	2.6	4.0	4.7	4.3	1.8	1.1	1.5	2.0	2.3	2.2	
Anzahl	2001	6	6		3	3				6	6								6	6		5	5		
Orte	2002	6	6		3	3				5	5								6	6		3	3		
	2003	7	7		7	7				6	6		2	2		1	1		7	7		4	4		

Stufe 1 bis Stufe 2: Behandlungen, siehe Versuchsbeschreibung