

Versuchsergebnisse aus Bayern 2005

Faktorielle Sortenversuche GERSTE Brauqualität und Kornphysikalische Untersuchungen

Ergebnisse aus Versuchen in Zusammenarbeit mit den Landwirtschaftsämtern

Herausgeber: Bayerische Landesanstalt für Landwirtschaft Institut für Pflanzenbau und Pflanzenzüchtung

Am Gereuth 8, 85354 Freising

Autoren: M. Herz, K. Fink, D. Nast

Kontakt: Tel: 08161/71-3629, Fax: 08161/71-4085

Email: markus.herz@LfL.bayern.de

Inhaltsverzeichnis

1 Beschreibung der bei Gerste und Malz angewandten Untersuchungsmethoden	••••••••••••
1.1 Kornphysikalische Untersuchungen der Gerste	
1.2 Chemische Untersuchungen der Gerste	6
1.3 Physiologische Untersuchungen der Gerste	7
1.4 Physikalische Untersuchungen des Malzes	9
1.5 Chemisch-technische Untersuchungen des Malzes	
1.6 Berechnung des Malzqualitätsindexes (MQI) Parameter	13
1.7 Berechnung des Kornqualitätsindexes (KQI)	15
1.8 Definition der Ertragsparameter	17
1.9 Stufenerklärung der faktoriellen Behandlungen bei Sommer- und Wintergerste	18
2 Korrelationen von Untersuchungsparametern der Sommergerste	19
2.1 Korrelation von Kornqualitätsparametern der Sommergerste	19
2.2 Korrelation von Malzqualitätsparametern der Sommergerste	20
2.3 Korrelation von Korn- und Malzqualitätsparametern der Sommergerste	21
3 Relative Varianzkomponenten der Sommergerste	22

4	Übersicht über die geprüften Sommergerstensorten 2005 und deren Abstammung	23
5	Sortenmittelwerte, ein- und mehrjährig	25
	5.1 Ertragsleistung und Kornqualität der Sommergerste 2003-2005	25
	5.2 Ertragsleistung und Kornqualität der Sommergerste 2003-2005, faktoriell	26
	5.3 Malzqualität der Sommergerste 2003-2005	
	5.4 Malzqualität der Sommergerste 2003-2005, faktoriell	29
	5.5 Ertragsleistung und Kornqualität der Sommergerste 2005	31
	5.6 Ertragsleistung und Kornqualität der Sommergerste 2005 – Orte, faktoriell	33
	5.7 Malzqualität der Sommergerste 2005	
	5.8 Malzqualität der Sommergerste 2005 – Orte, faktoriell	37
6	Übersicht über die geprüften 6-zeiligen Wintergerstensorten 2005 und deren Abstammung	38
7	Sortenmittelwerte, ein- und mehrjährig	
	7.1 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2003-2005	40
	7.2 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2003-2005, faktoriell	
	7.3 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2005	42
	7.4 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2005 – Orte, faktoriell	43

8	Ubersicht über die geprüften 2-zeiligen Wintergerstensorten 2005 und deren Abstammung	44
9	Sortenmittelwerte, ein- und mehrjährig	46
	9.1 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2003-2005	46
	9.2 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2003-2005, faktoriell	47
	9.3 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2005	50
	9.4 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2005 – Orte, faktoriell	52
	9.5 Malzqualität der 2-zeiligen Wintergerste 2005	54
10	0 Einfluss der Gelbmosaikvirusresistenz auf den Kornertrag und Kornqualität Wintergerste 2005	55
	10.1 Einfluss der Gelbmosaikvirusresistenz 2005 in Bad Windsheim	55
	10.2 Einfluss der Gelbmosaikvirusresistenz 2005 in Oberhaunstadt	56
	10.3 Einfluss der Gelbmosaikvirusresistenz 2005 in Rüdisbronn	57

1 Beschreibung der bei Gerste und Malz angewandten Untersuchungsmethoden

1.1 Kornphysikalische Untersuchungen der Gerste

Sortierung

Zur Ermittlung der Vollgerste (>2,5 mm), der Marktware (>2,2 mm) und des Anteiles 2,2-2,5 mm werden 100 g Körner mit dem Sortimat der Firma Pfeuffer mit den Schlitzgrößen 2,8 mm, 2,5 mm und 2,2 mm 5 Minuten geschüttelt und anschließend die verschiedenen Fraktionen gewogen. Die Wägung liefert gleich die relativen Sortieranteile. Die Sortierung ist umso besser, je geringer der Abputzanteil (=Fraktion <2,2 mm) oder je höher der Anteil großer Körner ist.

Tausendkorngewicht (TKG in g)

Bei der Bestimmung des TKG werden mit dem Körnerzähler Contador der Firma Pfeuffer 2 x 250 Körner gezählt, gewogen und der Mittelwert auf das Gewicht von 1000 Körnern umgerechnet.

Hektolitergewicht (hl) in kg

Das Hektolitergewicht wurde mit der Apparatur und nach den Bestimmungen der Physikalisch-Technischen Reichsanstalt ermittelt. Dabei wird bei gleicher Einschütthöhe ein Vorratszylinder (von 0,25 l) gefüllt. Das Schwert, das den Zylinder in halber Höhe teilt, wird nach der Befüllung herausgezogen, so dass die Gerste mit stets gleicher Fallgeschwindigkeit

in den Messbereich des Zylinders fällt. Das Messvolumen wird mit dem eingeschobenen Schwert begrenzt. Die Wägung des im Messzylinder enthaltenen Korngutes liefert nach einer tabellarischen Umrechnung dann das hl-Gewicht in kg.

Bewertung	hl-Gewicht in kg
gut	66 – 72
mittel	64 – 66
gering	unter 64

Kornausbildung

Die Ausbildung des Kornes wird mit Noten von 1 – 9 bonitiert. Dabei wird mit der Note 1 ein volles rundliches Korn mit geschlossener Bauchfurche und mit 9 ein flaches Abputzkorn charakterisiert.

Spelzenfeinheit

Je feiner die Spelze ist, umso höher ist der in der alkoholischen Gärung oder auch in der Fütterung umsetzbare Anteil der Kohlenhydrate. Als Maß für den Spelzenanteil dient deshalb die Bonitur der Spelzenfeinheit und - kräuselung (1=eine feingekräuselte Spelze, 9=eine grobe Spelze = hoher Rohfaseranteil).

1.2 Chemische Untersuchungen der Gerste

Rohprotein

Die Höhe des Eiweißgehaltes (= Stickstoff x 6.25) hängt im Wesentlichen von den Umweltfaktoren, produktionstechnischen Maßnahmen und schließlich in geringerem Maße auch von der Sorte ab. Der N-Gehalt spielt für die Malz- und Bierherstellung eine bedeutende Rolle. Eiweißarme Gersten gelten dabei als die feinere Brauware, die für die Herstellung heller Biere bevorzugt wird. Zu eiweißarme Gersten (unter 9%) können allerdings zu einem Mangel an Stickstoffsubstanzen führen, die einerseits für die Hefeernährung bei der Gärung und andererseits für den Schaum und die Vollmundigkeit des Bieres erforderlich sind. Eiweißreiche Gersten über 11,5% sind nur mit größerem Aufwand zu verarbeiten und liefern eine geringere Ausbeute an vergärbaren Kohlenhydraten. Mit der Zunahme des Eiweißgehaltes gehen eine Reihe technologischer Nachteile einher:

So steigt der Stickstoffgehalt in der Würze, fällt die Zellwandlösung und Mürbigkeit des Malzes, steigt der ß-Glucan-Gehalt, wird die Filtration des Bieres erschwert, ist die Gärung beeinträchtigt, leidet die Bierstabilität, wird das Bier dunkler, fällt die Extraktleistung

Die Stickstoffbestimmung erfolgt nach der Kjeldahl-Methode. Die Probemenge beträgt 1 Gramm. Aufschluss in einem Heizungsblock der Firma Gerhard (1 Stunde, 400 °C), Destillation und Titration des

Ammoniaks erfolgen vollautomatisch in Destillierautomaten. Die ermittelten Stickstoffwerte werden mit dem Faktor 6.25 auf Roheiweiß in der TS umgerechnet.

Neben dieser klassischen N-Bestimmungsmethode wird der Rohproteingehalt als Schnellmethode mit dem NIRS Systems 5000 der Firma Foss oder nach der NIT-Methode (Nah-Infrarot-Transmissions-Spektroskopie) mit dem Infratec 1225 bzw. 1226 der Firma Foss ermittelt.

Bei der Bestimmung des Gesamtstickstoffes nach Dumas mit dem Analysengerät der Firma Elementar wird die organische Substanz im Sauerstoffstrom verbrannt. Verunreinigungen werden über Filter abgetrennt. Der Stickstoff wird über einen Wärmeleitfähigkeitsdetektor bestimmt. Bei dieser Methode werden auch Nitratstickstoff und cyclischer Aminostickstoff mit erfasst. Darüber hinaus ist es auch möglich den Kohlenstoffgehalt und den Schwefelgehalt simultan zu bestimmen. Da die Einwaage je nach Stickstoffgehalt von 10 – 1000 mg schwanken kann, ist es auch möglich, Einzelkörner von Getreide auf Rohprotein zu testen.

Bewertung	Rohproteingehalt in % TS (N x 6,25)
günstig	bis 10,5
mittel	10,6 – 11,5 über 11,5
ungünstig	über 11,5

Rohfaser

Als Rohfasergehalt wird die Menge an säure- und alkaliunlöslichen, fettfreien organischen Bestandteilen bezeichnet, die nach dem modifizierten Weender-Verfahren ermittelt werden. Dieses Verfahren wird als teilautomatische Schnellmethode mit verkürzter Kochzeit (3 Minuten) bei stärkerer Säure- und Laugenkonzentration (3.125 %) in der Fibertec-Apparatur

der Firma Tecator durchgeführt. Ein Gramm der vermahlenen Gerste (1 mm-Sieb) wird zunächst mit 150 ml heißer Schwefelsäure zur Ausscheidung stärkehaltiger Substanzen aufgeschlossen. Der Kochvorgang wird nach dem Ausspülen mit Wasser mit 150 ml Kalilauge wiederholt (Entfernung eiweißhaltiger Stoffe). Anschließend wird die Probe mit Aceton entfettet, bei 130 °C 2 Stunden im Trockenschrank getrocknet, gewogen und anschließend 3 Stunden bei 580 °C verascht. Aus der Gewichtsdifferenz wird der Rohfaseranteil ermittelt.

1.3 Physiologische Untersuchungen der Gerste

Sie dienen der Ermittlung von Wasseraufnahmevermögen (=Quellvermögen der Gerste), Keimfähigkeit (=Zahl der lebensfähigen Körner), Keimenergie (=Zahl der gekeimten Körner nach 3 und 5 Tagen unter Mälzungsbedingungen) und Intensität des Wurzelwachstums (=Gleichmäßigkeit der Wurzellänge). Mit den erzielten Ergebnissen erhält man Hinweise auf die Mälzungsreife der Gerste, beeinflusst durch die Wasserempfindlichkeit (=Sensibilität gegen eine zu starke Wasserzufuhr) und Keimruhe (=mangelnde Keimung durch Blockierung der Enzymaktivität). Mälzungsreife Gersten zeigen ein hohes Quellvermögen und eine geringe Keimruhe mit gleichmäßigem intensiven Wurzelwachstum.

Keimfähigkeit

Mit der Bestimmung der Keimfähigkeit wird die Anzahl der lebensfähigen Körner ermittelt (latente, biologische Aktivität). Die Bestimmung erfolgt mittels Wasserstoffperoxid-Methode. Die Keimruhe hat keinen Einfluss auf die Keimfähigkeit, da diese durch die Einwirkung des Sauerstoffes aufgehoben wird. Damit kann das Korn zu jedem beliebigen Zeitpunkt zur Keimung gebracht werden. 2 x 200 Körner werden in je 200 ml einer

0,30%igen H₂0₂-Lösung 48 Stunden geweicht. Nach 48 Stunden werden dann die gekeimten Körner gezählt.

Bewertung	Keimfähigkeit
hoch	über 97
mittel	95 – 97
gering	90 – 94
ungenügend	unter 90

Quellvermögen – Wasseraufnahmefähigkeit

Zur Erfassung der Wasseraufnahmefähigkeit wird die in der Mälzereipraxis bekannte Methode des Quellvermögens eingesetzt. Die Wasseraufnahme der Gerste wird durch enzymatische Vorgänge im Korn beeinflusst. Je enzymkräftiger eine Sorte ist, um so größer ist die aufgenommene Wassermenge, um so günstiger der Brauwert. Ziel dieser Methode ist das natürliche Wasseraufnahmevermögen einer Gerste durch ein Minimum an Wasserweichzeit für eine höchstmögliche Wasseraufnahmne zu nutzen. Dabei spielt die Korngröße (TKG) eine wichtige Rolle. Das Quellvermögen wird deshalb nicht an einer gewichtsmäßig begrenzten Menge, sondern an 250 Körnern bestimmt. Das auf Vollgerste gereinigte Kornmaterial wird 65 Stunden bei 37 °C getrocknet, um einen einheitlichen Wassergehalt von ca. 12% zu erreichen. Mittels Körnerzähler werden 250 Körner gezählt und anschließend gewogen. Die Proben werden insgesamt 48 Stunden (= 11 Stunden Wasser, 37 Stunden Luft) nach folgendem Schema geweicht:

- 1. Tag: 5 Stunden Wasser, 19 Stunden Luft
- 2. Tag: 4 Stunden Wasser, 18 Stunden Luft und nochmals
 - 2 Stunden Wasser

Ausgeweicht wird nach 48 Stunden.

Die Wasseraufnahme (WA) wird nach dem oberflächlichen Abtrocknen (= 72 Stunden) der Proben ermittelt.

Umrechnung auf Wasseraufnahme in % TS =

Gewicht nach Weiche in g - TS Gerste in g = Gesamtwasser (bezogen auf 250 Körner)

Gesamtwasser x 100

WA % = -----

Gewicht nach Weiche in g

Bewertung	Wasseraufnahme in %
sehr gut	über 50
gut	47.1 – 50
befriedigend	44.1 – 47
unzulänglich	unter 44

Keimbild (Wurzelwachstum)

Die ausgeweichte Gerste wird in gelochten Plastikgefäßen (10 x 10 x 5 cm) zur Keimung flach ausgebreitet. Die Beurteilung der Intensität und Gleichmäßigkeit des Wurzelwachstums erfolgt am 3. Tag nach dem Einweichen visuell mit Noten von 1-9.

Dabei bedeutet:

1 = sehr rasches und gleichmäßiges Wachstum

(= 3 Wurzelverzweigungen)

2 = sehr rasch, aber ungleichmäßig

3 = normales, gleichmäßiges Wachstum

4 = normal, aber ungleichmäßig

5 = kräftiges, gleichmäßiges Spitzen

6 = kräftig, aber ungleichmäßig

7 = gleichmäßiges äugeln

8 = ungleichmäßiges äugeln

9 = keine Lebensäußerung

Keimenergie

Mit der Bestimmung der Keimenergie wird der Prozentsatz der gekeimten Körner ermittelt. Die Auszählung wird an den unter 1.3 beschriebenen Gerstenproben vorgenommen. Das bei dieser Methode eingesetzte Weichverfahren, gegliedert in Nass- und Luftweiche, simuliert den Weichablauf der Mälzerei. Die Keimenergie muss dabei bereits nach 3 Tagen der Keimfähigkeit sehr nahe kommen. Nach 5 Tagen muss eine gleichmäßige, volle Keimfähigkeit vorliegen. Eine größere Differenz der Keimenergie zur Keimfähigkeit charakterisiert den Keimruhezustand und die Wasserempfindlichkeit. Ungekeimte Körner haben einen negativen Einfluss auf den Mälzungsablauf (Schimmelbildung) und das fertige Malz (Ausbleiber = Rohfrucht, keine Auflösung des Mehlkörpers durch Enzyme).

Bewertung	Keimenergie in % n. 3 Tagen
hoch	über 95
mittel	90 – 95
gering	85 – 90
ungenügend	unter 85

1.4 Physikalische Untersuchungen des Malzes

Mit der physikalisch-technischen Analyse wird die Härte bzw. Mürbigkeit des Malzes ermittelt. Aus der Vielfalt der Methoden zur Darstellung der cytolytischen Abbauvorgänge im Korn wird der Brabender-Härteprüfer eingesetzt. Nur ein mürbes Malz, aus einer gleichmäßig gekeimten Gerste, lässt sich beim Maischen schnell und vollständig extrahieren. Der Brabender-Härteprüfer misst die Energie, die zum Zerkleinern von 12g Grobschrot (25% Feinmehl) auf einen Feinmehlanteil von 90% erforderlich ist, indem der Zeigerausschlag eines

Elektrodynamometers während des Mahlvorganges kontinuierlich elektronisch erfasst wird.

Malzmürbigkeit

Brabender

Bewertung	Malzmürbigkeit (Kraftaufwand Nm)
sehr gut	bis 100
gut	101 – 115
mittel	116 - 130
unzulänglich	> 130

Jahrgangseinflüsse können das Niveau der Malzhärte beträchtlich variieren.

Friabilimeter

Das Friabilimeter bewertet die Malzmürbigkeit (physikalische Messmethode ähnlich der Brabender-Malzmürbigkeits-bestimmung sh. 1.4). Dabei werden 50g Malzkörner 8 Minuten lang mittels einer Gummiwalze gegen ein rotierendes, standardisiertes Drahtgeflecht gedrückt. Für die Serienuntersuchung wurde die Methode modifiziert: Kornmenge und Zeitaufwand wurden auf 20g bzw. 5 Minuten reduziert. Durch den mechanischen Abrieb wird der enzymatisch gut gelöste Kornanteil durch das Siebgewebe gedrückt, gesammelt, gewogen und zur Errechnung des modifizierten Anteiles mit 5 multipliziert. Der ermittelte Wert lässt Rückschlüsse auf die Läuterarbeit im Sudhaus und die Filtrierbarkeit des Bieres zu. Vor allem weist diese Analyse, im Gegensatz zum Brabender, auch auf die Homogenität einer Malzprobe hin. Der in der Siebtrommel zurückbleibende, schlecht gelöste, glasige Rückstand wird zur Differenzierung in Teil- und Ganzglasigkeit abgesiebt. Mit steigendem Anteil an ganzglasigen Körnern wird der Brauwert eines Malzes zunehmend unzulänglicher. Hohe Anteile ganzglasiger Körner sind mit einem stark opalen bzw. trüben Ablauf der Würze gekoppelt. Hohe Friabilimeter-Werte weisen auf eine optimale Vermälzung der Gerste hin. Die Ganzglasigkeit kann hervorgerufen werden durch mangelhafte Keimenergie, schlechte Ernte-, Trocknungs- und Lagerungsbedingungen der Gerste und durch eine unzulängliche Weich-, Keim- und Darrarbeit.

Bewertung	Mürbigkeit in %	Ganzglasigk.n.Kretschmar %
sehr gut	91 - 100	geringe Glasigkeit 0 – 1.9
gut	81 - 90	mittlere Glasigkeit 2.0 – 2.9
befriedigend	71 - 80	starke Glasigkeit 3.0 – 4.0
mangelhaft	unter 70	sehr hohe Glasigk. über 4.0

1.5 Chemisch-technische Untersuchungen des Malzes

Schwand

Die sich beim Weichen, Keimen und Darren abspielenden Veränderungen im Gerstenkorn verursachen Gewichtsverluste, die, je nach Mälzungsart und Lösungsfähigkeit der Gerste, unterschiedlich hoch sein können. Aus der Trockensubstanz der Gerste und des daraus hergestellten entkeimten (= geputzt) Malzes wird der wasserfreie Schwand berechnet. Bei der üblichen Mälzung kann sich der Schwand zwischen 7 – 10% bewegen. Darunter liegende Werte weisen auf eine geringere Lösungsfähigkeit der Gerste hin, während Werte über 10% eine sehr rasche Lösung (=Überlösung durch zu schnelles Wurzelwachstum) andeuten. Eine Unterscheidung in Atmungs- und Keimschwand erfolgt nicht. Beide Schwandfaktoren hängen von den Keimbedingungen ab, wobei das Feuchtigkeitsniveau des Keimgutes eine entscheidende Rolle spielt.

Rohprotein (siehe 1.2)

Löslicher Stickstoff und Eiweißlösungsgrad

Die proteolytische Lösung beziffert die in der Würze in Lösung gegangene Stickstoffmenge. Der N-Gehalt in der Würze ist abhängig vom Rohproteingehalt des Malzes, der genotypischen Lösungsfähigkeit und vom Mälzungs- und Maischverfahren. Der lösliche Stickstoff beeinflusst die Bierqualität und den technischen Ablauf im Brauprozess. Einerseits ist eine gewisse Menge von löslichem Stickstoff – insbesondere mit niedermolekularen Eiweißverbindungen – notwendig, die für eine ausreichende Ernährung der Hefe sorgen und damit einen ungestörten Ablauf der Hauptgärung ohne Bildung unerwünschter Gärungsnebenprodukte garantieren soll, andererseits beeinträchtigen höhermolekulare Eiweißverbin-

dungen die Filtrierbarkeit und Stabilität des Bieres. Zuviel Stickstoff in der Würze führt schließlich zu dunkleren Farben, beeinträchtigter Bittere und verminderter Bierstabilität.

Die proteolytische Lösung wird durch die Ermittlung des löslichen Stickstoffes in der Laborwürze, hergestellt nach dem Kongress-Maischverfahren, gemessen und auf die Malztrockensubstanz (in mg/100g MTS) umgerechnet. Die Bestimmung des löslichen Stickstoffes erfolgt, wie beim Rohprotein, nach der Kjehldahl-Methode. Dabei werden 5 ml Würze mit 15 ml Schwefelsäure und 2 Tabletten eines Katalysators versetzt, eine Stunde aufgeschlossen und anschließend destilliert.

Bei der Beurteilung des löslichen Stickstoffes ist Vorsicht geboten, da ein Eiweißlösungsgrad von z.B. 40% bei einem Eiweißgehalt des Malzes von 9,8% 580 mg an löslichem Stickstoff erbringt; dagegen werden bei einem Ausgangsgehalt von 11,5% 750 mg/100 g MTS ermittelt. Günstig ist ein Eiweißlösungsgrad, der eine Menge zwischen 600 – 700 mg lösl. N/100g MTS erbringt.

Bewertung	Löslicher Stickstoff mg/100 g MTS
zu gering	unter 550
mittel	550 – 600
gut	600 - 650
gut – sehr gut	650 – 700
zu hoch	über 700
Bewertung	Eiweißlösungsgrad in %
sehr gut	um 42
gut	38 – 41
befriedigend	35 – 38
unzulänglich	unter 35

VZ 45 °C

Um Rückschlüsse auf die Enzymaktivität und Mälzungsarbeit ziehen zu können, wird Feinschrot 1 Stunde bei 45 °C und einer Rührgeschwindigkeit von 200 U/min gemaischt. Nach dem Abkühlen, Aufwiegen und der Filtration wird der Extraktgehalt ermittelt und daraus die Verhältniszahl (VZ) berechnet. Die Verhältniszahl gibt an, wie viel % der höchstmöglichen Extraktausbeute (Kongressverfahren bei 70 °C) bei einer Temperatur von 45 °C schon erreicht wird. Im einzelnen gibt diese VZ 45 °C Hinweise auf die Weicharbeit und Ausmälzung, die Enzymaktivität (außer ß-Amylase) und Eiweißlösung. Der Wert steht in enger Beziehung zum Amino-stickstoffgehalt und erlaubt damit eine Aussage über die Hefeernährung. Der Wert soll mindestens 36% betragen. VZ 45 °C-Werte unter diesem Standardwert weisen auf Enzymschwäche, besonders der proteolytischen Enzyme hin.

Bewertung	VZ 45 °C in %
sehr enzymstark	über 45
enzymkräftig	41 – 45
befriedigende Enzymkräfte	36 - 40
enzymgeschwächt	31 - 35
ungewöhnlich enzymschwach	unter 31

Viskosität

Die Viskosität der Kongresswürze deutet ebenfalls auf die enzymatische Lösung des Malzes hin und kennzeichnet vorrangig die cytolytische Lösung. Die Aussage umfasst den Abbau der Hemicellulosen und Gummikörper zu niedermolekularen Verbindungen. Dabei wird die Wirkung der Endo-ß-Glucanasen dargestellt. Der ermittelte Wert gibt Hinweise auf die zu erwartende Läuterzeit im Sudhaus und die Schaumhaltbarkeit und

Stabilität des Bieres. Die Messung erfolgt mit einem Brookfield-Rotationsviskosimeter mit digitaler Anzeige. Bei diesem Gerät wird das Drehmoment gemessen, das durch eine zylinderförmige Flüssigkeitsschicht zwischen einem ruhenden und einem rotierenden Zylinder übertragen wird. 16 ml einer auf 20 ° vortemperierten Würze werden dazu automatisch in den Rotationszylinder überführt. Der Wert in mPa.sec wird vom Rechner übernommen und auf einen Stammwürzegehalt von 8,6% umgerechnet.

Bewertung	Viskosität mPa.sec
sehr gut	unter 1.53
gut	1.53 – 1.61
befriedigend	1.62 – 1.67
unzulänglich	über 1.67

Extrakt

Die Extraktergiebigkeit des Malzes, die nach der sogenannten Kongressmaischmethode ermittelt wird (Laboratoriumsausbeute), ist eines der wichtigsten Untersuchungsmerkmale. Die Bestimmung erfolgt nach einem standardisierten Maischverfahren. Die Messung des Extraktes wird in Form einer Dichtebestimmung an der aus dem Maischprozess gewonnenen Malzwürze durchgeführt. Sie umfasst die Summe aller Bestandteile, die beim Maischen in Lösung gegangen sind. An dieser Malzwürze werden außerdem folgende Analysenwerte ermittelt:

Vergärbarer Extrakt (= Endvergärungsgrad), Farbe und Klarheit der filtrierten Würze, pH-Wert, Viskosität und der lösliche Stickstoff (ELG = Eiweißlösungsgrad).

Maischmethode und Filtration zur Bestimmung des Malzextraktes: 2 x 10g Malz-Feinschrot werden mit 40 ml destilliertem Wasser (45 °C) gut verrührt. Mit einer Rührgeschwindigkeit von 100 U/min wird die Temperatur von 45 °C 30 Minuten eingehalten. Anschließend wird die Temperatur des vollautomatischen Maischbades innerhalb von 25 Minuten (1 °C/min) auf 70 °C erhöht. Es erfolgt eine weitere Wasserzugabe (20 ml mit 70 °C) und unter ständigem Rühren eine 60 Minuten lange Fortsetzung der Maischarbeit. Nach insgesamt 115 Minuten Maischzeit wird die Würze rasch auf 20 °C abgekühlt. Anschließend wird der Becherinhalt auf ein einheitliches Gewicht (90 Gramm) aufgewogen. Nach der Filtration über einen Faltenfilter wird die Dichte der Würze im Density-Meter der Firma Paar (DM A 48) vollautomatisch gemessen. Unter Berücksichtigung des Malzwassergehaltes wird der ermittelte Wert auf Extrakt in der Trockensubstanz umgerechnet.

Bewertung	Extraktgehalt in %
sehr gut	über 82.0
gut	80.6 - 82.0
befriedigend	79.1 – 80.5
unzulänglich	unter 79.0

Endvergärungsgrad

Der Endvergärungsgrad, ermittelt an der Kongresswürze, dient der Untersuchung des Stärkeabbaues. Es handelt sich dabei um eine vereinfachte Methode zur Bestimmung des vergärbaren Extraktes (=Zucker), ausgedrückt in % des Gesamtextraktes der Würze. Der ermittelte Wert ist insgesamt ein Ausdruck der amylolytischen Enzymaktivität. Alle Lösungsmerkmale des Malzes sind i. d. R. gut mit der Endvergärung korreliert. Bestimmung: 2 x 10 ml Würze werden 15 Minuten erhitzt, dann abgekühlt, mit 0,5 g Hefe versetzt und anschließend bei Zimmertemperatur 16

Stunden leicht geschüttelt. Am 2. Tag wird die Hefe abzentrifugiert und die Messung wie bei der Extraktbestimmung durchgeführt.

Bewertung	Vergärb. Extrakt in %
sehr gut	über 82.0
gut	80.6 - 82.0
befriedigend	79.1 – 80.5
unzulänglich	unter 79.0

Farbe

Farbe und Klarheit der Würze: Der Ablauf der Kongresswürze wird nach der Geschwindigkeit und der Klarheit beurteilt. Je schlechter ein Malz gelöst ist, umso langsamer und trüber laufen die Würzen ab (hoher Anteil an Eiweißstoffen). Eine stärkere Farbbildung ist dabei unerwünscht. Sowohl die Farbe als auch die Klarheit wird photometrisch ermittelt.

Bewertung	Farbe EBC-Einheiten
Normwert	bis 4.0
mittelfarbig	4.1 – 5.0
dunkel	über 5.0

pH-Wert

Der pH-Wert der Kongresswürze gehört zur routinemäßigen Qualitätskontrolle. Der Normalwert liegt bei 5.9 (Schwankungen zwischen 5.6 – 6.1). Die Bestimmung erfolgt elektrometrisch nach Abschluss der Filtration an der auf 20 °C temperierten Würze mit einer Glaselektrode (pH-Messgerät der Firma WTW-Weilheim). Eine sehr gute Auflösung und hohe Abdarrtemperaturen vermindern (=verbessern) den Wert und umgekehrt erhöht

sich der Wert bei schlechter Lösung. Die Wirkungsbedingungen der Enzyme sind von einem optimalen Wert abhängig. Der pH-Wert übt einen Einfluss auf die enzymatischen Abbauvorgänge beim Maischen aus und bestimmt die Löslichkeit der Eiweißstoffe.

1.6 Berechnung des Malzqualitätsindexes (MQI) Parameter

Zur Berechnung des Malzqualitätsindexes wurden auf Empfehlung des Wissenschaftlichen Beirates der Braugerstengemeinschaft folgende Malzqualitätsparameter herangezogen:

VZ 45 °C (Hartongzahl) Friabilimeter Extrakt Endvergärung

Transformation der Messwerte

Um aus verschiedenen Parametern mit numerisch stark differierenden Werten eine gemeinsame Kenngröße entwickeln zu können, wurden die Messwerte mit nachfolgenden Gleichungen linear transformiert.

Parameter	Messbe- reich	Gleichung
VZ 45 °C	25 - 60	y = -4,6432 + 0,2256*x
Friabilimeter	40 - 100	y = -4,2839 + 0,1321*x
Extrakt	72 - 87	y = -37,390 + 0,5332*x
Endvergärung	76 - 87	y = -54,267 + 0,7272*x

Gewichtung der transformierten Messwerte

Mit den verschiedenen Malzqualitätsparametern wird versucht, die proteolytische Lösung, den Zellwandabbau und die Umsetzung der Kohlenhydrate zu quantifizieren. Die dabei ermittelten Kenngrößen haben eine unterschiedliche verfahrenstechnische oder wirtschaftliche Bedeutung. Ihrer Bedeutung entsprechend werden deshalb die transformierten Messwerte gewichtet.

Parameter	Gewichtung
VZ 45 °C - Punkte	* 1,5
Friabilimeter - Punkte	*1,5
Extrakt - Punkte	*3,0
Endvergärung - Punkte	*1,0

Berechnung der Punkte - Summen

Durch Multiplikation der transformierten Meßwerte mit der Gewichtung werden die Punkte für die einzelnen Parameter und mit der Addition schließlich die Punktesummen nach folgendem Beispiel (Alexis 1996) ermittelt.

Parameter	Analysen- wert	Punkte	Gewichtung	gew. Punkte
VZ 45 °C	45,9	5,71	1,5	8,57
Friabilimeter	86,7	7,17	1,5	10,76
Extrakt	81,8	6,22	3,0	18,66
Endvergärung	84,8	7,40	1,0	7,40
Punkte - Summe				45,39

Transformation der Punktesummen

Die Einstufung in eine international übliche Skalierung (1-9) erfordert schließlich eine neuerliche lineare Transformation der Punktesummen nach folgender Gleichung:

Punkte- summe	Gültigkeit	Gleichung
Х	20 - 48	$y = -4,712 + 0,2856 \cdot x$

Jahrgangskorrektur

Jahrgangskorrektur	= MQI der einzustufenden Sorten
	+ MQI-Differenz zu deren langjährigen,
	orthogonalen MQI-Mittelwerten

z. B. Sommergerste 1996

Sorte	MQI 1996	MQI bis 1995 1)	MQI korr. 2)
Barke	8,4		8,8
Alexis	8,3	8,7	8,7
Thuringia	8,3	8,3	8,7
Scarlett	8,1	8,5	8,5
Brenda	8,1	8,3	8,5
Kombi	8,3		8,7
Krona	7,9	8,3	8,3
Halla	7,9	8,0	8,3
Sissy	7,7	7,9	8,3
Maresi	7,9	8,3	8,1
Mentor	7,1	6,8	7,5
Bella	7,0	7,2	7,4

Steffi	6,4	7,4	6,8
Sigrid	5,6	5,7	6,0
Baronesse	4,8	6,1	5,2
Orthega	4,4	5,4	4,8
Mittelwert	7,1	7,5	
Differenz =		+ 0,4	
Korrekturfaktor			

- 1) ein- bis achtjährige gewogene Mittelwerte
- 2) MQI korrigiert = aktueller MQI + Korrekturfaktor

Klasseneinteilung

Die auf obige Art erzielte MQI-Berechnung wird zur Einteilung in Qualitätsklassen nach folgendem Beispiel benutzt:

8,1 - 9,0 = +++ sehr gute Braugerste

7,1 - 8,0 = ++ gute bis sehr gute Braugerste

6,1-7,0 = + gute Braugerste

5,1-6,0 = (+) geringe Braugerste

4,1 - 5,0 = 0 Futtergerste

Berechnungsbeispiel: s. Tabelle links

Alexis: 8,3 + 0,4 = 8,7 +++

Steffi: 6,4 + 0,4 = 6,8 + 0Orthega: 4,4 + 0,4 = 4,8 + 0

1.7 Berechnung des Kornqualitätsindexes (KQI)

Lineare Transformation der Kornqualitätsparameter

Parameter	Messbereich	Gleichung
HI-Gewicht	40 – 75	Y = -8,194 + 0,2299*x
Sort. >2,8 mm	0 – 100	$Y = 0.9192 + 0.08 \times x^*$
Kornausbildung	1 – 9	Y = 10 - x
Spelzenfeinheit	1 – 9	Y = 10 - x

x = Analysenwert

Gewichtung

Parameter	Gleichung
HI-Gewicht	* 1,0
Sort. >2,8 mm	* 3,0
Kornausbildung	* 2,0
Spelzenfeinheit	* 2,0

Berechnung der Punkte - Summen

Parameter	Analysen- wert	Punkte	Gewichtung	Gew. Punkte
HI-Gewicht	68,3	7,50	1,0	7,50
TII-Gewicht	00,3	7,50	1,0	7,50
Sort. >2,8 mm	31,6	3,45	3,0	10,35
Kornausbildung	4,0	6,00	2,0	12,00
Spelzenfeinheit	2,5	7,50	2,0	15,00
Punkte-Summe				44,85

Lineare Transformation in KQI - Punkte

Y = 6,998 + 0,2666 * x

Berechnungsbereich: 30 – 60 Punkte – Summe

x = Punkte-Summe

Jahrgangskorrektur

Jahrgangskorrektur = KQI der einzustufenden Sorten plus KQI-Differenz zu deren langjährigen, orthogonalen Mittelwerten

Sommergerste

Sommergerste	Conto	KOI bis	KOI his 4007	KOL kom:
Lfd.	Sorte	KQI bis	KQI bis 1997	KQI korr.
Nr.		1997	-,	-
1	Alexis	5,1	5,1	5,4
2	Steffi	7,9	8,2	8,2
3	Maresi	5,7	6,2	6,0
4	Sissy	6,0	6,3	6,3
5	Krona	6,1	6,8	6,4
6	Thuringia	6,2		6,5
7	Scarlett	7,1		7,4
8	Brenda	6,3		6,6
9	Sigrid	5,6		5,9
10	Orthega	3,9		4,2
11	Barke	7,6		7,9
12	Bella	4,0		4,3
13	Madras	6,2		6,5
14	Madonna	6,9		7,2
15	Caminant	4,3		4,6
16	Escada	5,5		5,8
17	Hanka	6,9		7,2
Mittelwert	(1-5)	6,2	6,5	
Differenz				
	= Korrekturfaktor		0,3	

dreijährige, orthogonale Mittelwerte (1994 – 1996)
 KQI – korrigiert = einjährige KQI–Bewertung plus Korrekturfaktor

Berechnung des Kornqualitätsindexes (KQI) Fortsetzung) Sechszeilige Wintergerste

Lfd. Nr.	Sorte	KQI 1997	KQI bis 1997 ¹⁾	KQI korr.
1	Landi	5,0		4,6
2	Nixe	4,4	4,4	4,0
3	Grete	2,8	2,3	2,4
4	Lorena	5,5	4,4	5,1
5	Theresa	2,2	2,1	1,8
6	Elfe	3,6		3,2
7	Rocca	3,0		2,6
8	Plus	3,3		2,9
9	Lolita	3,9		3,5
10	Yuka	1,8		1,4
11	Geo	3,5		3,1
12	Camilla	2,6		2,2
13	Arkona	3,6		3,2
Mittelwert	(2-5)	3,7	3,3	
Differenz	=Korrekturfaktor		0,4	

¹⁾ dreijährige, orthogonale Mittelwerte (1994 – 1996)

Zweizeilige Wintergerste

Lfd.	Sorte	KQI 1997	KQI bis	KQI korr.
Nr.			1997 ¹⁾	-/
1	Marinka	6,1	6,0	5,8
2	Astrid	8,1	7,9	7,8
3	Angora	5,2	4,8	4,9
4	Hanna	5,4	4,8	5,1
5	Jasmin	8,1	7,7	7,8
6	Labea	5,7	6,0	5,4
6	Trasco	6,2	5,3	5,9
7	Jolante	5,7	5,8	5,4
8	Babylone	7,5	6,9	7,2
9	Gunda	7,0	7,0	6,7
11	Duet	5,5		5,2
12	Regina	4,8		4,5
13	Tokyo	1,1		0,8
14	Tiffany	6,0		5,7
15	Bonnie	4,2		3,9
16	Cordoba	3,9		3,6
17	Gamelan	5,1		4,8
18	Cabrio	5,9		5,6
19	Cobalt	4,8		4,5
Mittelwert	(1-10)	6,5	6,2	
Differenz	= Korrekturfaktor		-0,3	

¹⁾ dreijährige, orthogonale Mittelwerte (1994 – 1996)

Klasseneinteilung

Siehe Berechnung des Malzqualitätsindexes (MQI)

²⁾ KQI – korrigiert = einjährige KQI-Bewertung plus Korrekturfaktor

²⁾ KQI – korrigiert = einjährige KQI-Bewertung plus Korrekturfaktor

1.8 Definition der Ertragsparameter

1. Kornertrag Mähdruscherntemenge in dt/ha

bezogen auf 86% TS

2. Marktwarenertrag a) bei Wintergerste

Kornertrag x Sortierung >2,2 mm

100

b) bei Sommergerste

Kornertrag x Anteil der Sortierfraktion >2,5 mm + max. 8% 2,2-2,5 mm

+ max. 2% <2.2 mm

100

3. Geldrohertrag Marktertrag Sommergerste x Braugerstenpreis

> + Resterntegut x Futtergerstenpreis

4. Braugerstenpreis 12.60 **€**/dt

5. Futtergerstenpreis 9,50 **€**/dt

1.9 Stufenerklärung der faktoriellen Behandlungen bei Sommer- und Wintergerste

Sortiment 151 - 6-zeilige Wintergerste

Stufe 1 = ortsüblich optimale N-Düngung, **ohne** Wachstumsregler, **ohne** Blattfungizide

Stufe 2 = ortsüblich optimale N-Düngung, Wachstumsregulator nach Bedarf, Blattfungizide gezielt nach Bedarf

Sortiment 153 - 2-zeilige Wintergerste

Stufe 1 = ortsüblich optimale N-Düngung, ohne Wachstumsregler, ohne Blattfungizide

Stufe 2 = ortsüblich optimale N-Düngung, Wachstumsregulator nach Bedarf, Blattfungizide gezielt nach Bedarf

Sortiment 167 - 6- und 2-zeilige Wintergerste

Sortenversuch zur Beurteilung der Gelbmosaikvirusresistenz und -toleranz

Sortiment 182 - Sommergerste

Stufe 1 = ortsüblich optimale N-Düngung, **ohne** Wachstumsregler, **ohne** Blattfungizide

Stufe 2 = ortsüblich optimale N-Düngung, Wachstumsregulator nach Bedarf, Blattfungizide gezielt nach Bedarf

2 Korrelationen von Untersuchungsparametern der Sommergerste

2.1 Korrelation von Kornqualitätsparametern der Sommergerste

	TKG	Sort.	Sort.	Sort.	Sort.	Sort.	Korn-	Spelzen-	Roh-
Kriterium		>2.8 mm	2.5-2.8 mm	2.2-2.5 mm	<2.2 mm	>2.5 mm	ausbildung	feinheit	protein
							1 - 9	1 - 9	gehalt
hl-Gewicht	0.505	0.469	-0.358	-0.547	-0.614	0.575	-0.375	-0.525	-0.232
TKG		0.832	-0.818	-0.741	-0.557	0.730	-0.295	-0.076	-0.242
Sort. >2.8 mm			-0.965	-0.925	-0.681	0.908	-0.545	-0.295	-0.208
Sort. 2.5-2.8 mm				0.795	0.504	-0.766	0.489	0.220	0.140
Sort. 2.2-2.5 mm					0.803	-0.994	0.556	0.359	0.270
Sort. <2.2 mm						-0.863	0.457	0.366	0.313
Sort >2.5 mm							-0.554	-0.371	-0.285
Kornausbildung								0.568	0.061
Spelzenfeinheit									0.056

Quelle: LfL, IPZ2, AQU 4, Sort. 182/2005

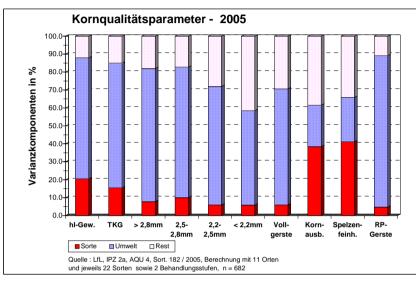
Signifikanz: $P_{5\%} = 0.09$; $P_{1\%} = 0.11$; $P_{0.1\%} = 0.15$; n = 682

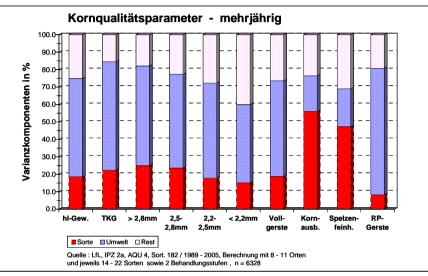
2.2 Korrelation von Malzqualitätsparametern der Sommergerste

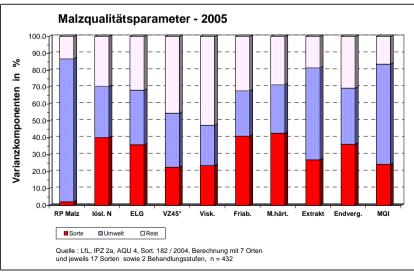
	Lösl. N	ELG	VZ 45°C	Visko-	Malz-	Friabi-	Extrakt	Endver-	MQI
Kriterium				sität	härte	limeter		gärung	
Rohprotein	0.279	-0.568	-0.341	0.058	0.464	-0.498	-0.627	-0.369	-0.673
Lösl. N		0.626	0.178	-0.302	-0.135	0.226	-0.086	-0.031	-0.083
ELG			0.419	-0.292	-0.479	0.587	0.428	0.255	0.460
VZ 45°C				-0.363	-0.429	0.367	0.350	0.519	0.668
Viskosität					0.614	-0.520	-0.186	-0.526	-0.436
Malzhärte						-0.849	-0.510	-0.689	-0.767
Friabilimeter							0.411	0.547	0.694
Extrakt								0.465	0.822
Endvergärung									0.797

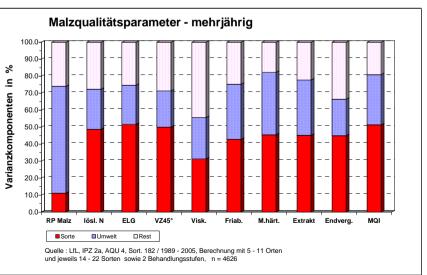
Quelle: LfL, IPZ2, AQU 4, Sort. 182/2005

Signifikanz: $P_{5\%} = 0.10$; $P_{1\%} = 0.13$; $P_{0.1\%} = 0.16$; n = 432


2.3 Korrelation von Korn- und Malzqualitätsparametern der Sommergerste


Kriterium	TKG	Sort. >2.8 mm	Sort. 2.5-2.8 mm	Sort. 2.2-2.5 mm	Sort. <2.2 mm	Sort. >2.5 mm	Korn- ausbildung	Spelzen- feinheit
							1 - 9	1 - 9
Rohprotein	-0.486	-0.530	0.513	0.490	0.363	-0.486	0.119	0.136
Lösl. N	-0.306	-0.233	0.205	0.260	0.153	-0.252	0.091	0.129
ELG	0.132	0.231	-0.244	-0.171	-0.158	0.174	-0.022	-0.009
VZ 45°C	0.016	0.217	-0.198	-0.219	-0.196	0.222	-0.122	-0.094
Viskosität	0.123	0.023	-0.066	0.045	0.140	-0.060	0.100	0.211
Malzhärte	-0.067	-0.258	0.186	0.346	0.335	-0.354	0.215	0.295
Friabilimeter	0.013	0.122	-0.077	-0.184	-0.165	0.187	-0.064	-0.152
Extrakt	0.473	0.610	-0.552	-0.624	-0.555	0.632	-0.388	-0.313
Endvergärung	0.083	0.271	-0.205	-0.348	-0.326	0.355	-0.243	-0.323
MQI	0.297	0.489	-0.422	-0.538	-0.472	0.544	-0.313	-0.323


Quelle: LfL, IPZ2, AQU 4, Sort. 182/2005


Signifikanz: $P_{5\%} = 0.09$; $P_{1\%} = 0.11$; $P_{0.1\%} = 0.15$; n = 682

3 Relative Varianzkomponenten der Sommergerste

4 Übersicht über die geprüften Sommergerstensorten 2005 und deren Abstammung

	Zu-	Verm.		
Sorte	lassung	Fläche	Abstammung	Sorteninhaber/Züchter (Kurzform)
	seit:	ha 1)		
Annabell	1999	315	90014 DH x Krona	ACK
Auriga	2002	833	(Viskosa x Krona) x Annabell	ACK
Barke	1996	51	Libelle x Alexis	BRGD
Belana	2003	11	Aspen x Annabell	SAUN/NORD
Braemar	2002	162	NFC 5563/NFC 94-20	SYNG
Carafe	2003	18	(Linden x Cooper) x Extract	SYNG
Class	2003	35	Chariot x Optic	EGER
Margret	2003	200	Viskosa x Scarlett	STRG/ACK
Pasadena	1998	4	Marina x Krona	LOCH
Simba *	2003	7	Otira x Prolog	SAUN/NORD
Ursa	2002	288	(Thuringia x Hanka) x Annabell	NORD
Xanadu	2003	30	Viskosa x Scarlett	SAUN/NORD
Tocada *	2003	98	Pasadena x Henni	LOCH
Germina	2004	-	LP217.96 x LP917.96	LOCH
Mauritia	2004	73	Madras x LP217.96	LOCH
Isotta	2004	7	Havanna x (Prisma x Br.4714a)	BRGD
Beatrix	2004	-	Viskosa x Pasadena	NORD
Cristalia	2004	-	Ortoli x Brise	SYNG
Carvilla	2004	11	(Cork x Newgrange) x Vortex	SYNG
NFC Tipple	2004	-	(NFC497/12 x Cork) x Vortex	SYNG
Troon	2002	-	NSL 95-2949 x Extract	LINI
Christina	2004	-	Annabell x 96/11	SEED
Westminster	2005	-	NSL 97-5547 x Barke	LINI
Marthe	2005	-	Neruda x Recept	NORD
Sophie	2005	-	(Scarlett x Annabell) x NORD 1748	ACK
Power	2005	-	Saloon x (Colada x (Lux x Annabell)	STNG
Sebastian	2005	-	Lux x Viskosa	STNG

¹⁾ Zur Feldbesichtigung gemeldete Flächen in Bayern

Quelle: Amtliche Saatenanerkennung

^{*} Futtergerste

ANSCHRIFTEN DER ZÜCHTER/SORTENINHABER:

ACK	 Saatzucht Dr. J. 	Ackermann & Co.,	Ringstraße 17,	94342 Irlbach

- BRGD Saatzucht Breun Josef GdbR, Amselweg 1, 91074 Herzogenaurach
- EGER Pflanzenzucht Dr.h.c. Carsten, Inh. Erhardt Eger KG, Postfach 12 61, 23601 Bad Schwartau
- GRTZ GRÖTZNER Pflanzenzucht GmbH & Co. KG, 22397 Hamburg
- HADM Saatzucht Hadmersleben GmbH, Kroppenstedter Straße, 39398 Hadmersleben
- LIMA Limagrain Genetics Grandes Cultures, F 63203 Riom Cedex
- LINI Limagrain Nickerson GmbH. 31232 Edemissen
- LOCH Firma Lochow-Petkus GmbH, Postfach 11 97, 29296 Bergen
- MOMO SARL Adrien Momont et Fils, 7. Rue de Martinval, 59246 Mons-en-Pevele, Frankreich
- NORD Saatzuchtgesellschaft Nordsaat, Saatzucht Langenstein, Hauptstr. 1, 38895 Böhnshausen
- SAUN Saaten-Union, Eisenstr. 12, 30916 Isernhagen
- SCOB SECOBRA Saatzucht GmbH, Lagesche Str. 250, 32657 Lemgo
- SEED SW Seed GmbH, Teendorf, 29582 Hanstedt I
- STNG Saatzuchtges. Streng's Erben GmbH & Co. KG, 97215 Uffenheim
- STRG Dr. Stefan Streng, Aspachhof, 97215 Uffenheim
- SYNG Fa Syngenta Seeds GmbH, Postfach 2180, 47519 Kleve

5 Sortenmittelwerte, ein- und mehrjährig

5.1 Ertragsleistung und Kornqualität der Sommergerste 2003-2005

Sorte	Korn- ertrag	Marktw ertrag	Geldroh- ertrag	Roh- prot.	TKG	hl- Gewicht	,		Kornaus- bildung	Spelzen- feinheit	Kornqu inc	alitäts- lex	
	dt/ha	dt/ha	€ ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
abschließende Bewertung na	abschließende Bewertung nach drei Prüfjahren												
Barke	59.5	58.5	736.4	10.9	46.8	71.7	68.1	89.6	1.8	3.1	3.0	7.7	++
Pasadena	62.9	61.8	773.1	10.5	44.3	69.5	60.4	86.4	1.9	4.0	3.8	6.2	+
Annabell	65.7	64.6	810.1	10.5	42.5	69.0	59.1	87.4	1.8	3.6	3.7	6.3	+
Ursa	65.2	64.3	810.2	10.7	44.2	69.4	71.0	91.3	1.4	3.7	3.6	7.1	++
Auriga	62.2	61.4	770.2	10.8	45.5	71.8	64.5	89.6	1.4	3.9	3.4	6.9	+
Braemar	61.9	61.4	771.7	10.7	46.8	70.0	76.7	93.8	1.0	3.5	4.2	7.3	++
Margret	63.9	63.2	794.4	10.8	46.1	72.0	74.2	92.5	1.0	4.0	3.5	7.4	++
Tocada	67.2	66.1	632.0	10.2	49.7	69.7	62.3	86.1	1.8	4.7	4.8	5.4	(+)
Class	62.3	61.7	765.3	10.7	47.1	71.2	66.9	89.5	1.2	4.0	3.9	6.6	+
Xanadu	64.1	63.3	782.4	11.1	46.0	71.0	72.9	89.7	1.3	3.5	3.6	7.4	++
Belana	65.2	64.4	799.7	10.6	44.1	69.8	62.7	87.6	1.4	3.2	3.5	6.9	+
Simba	66.6	65.1	622.4	10.7	47.2	70.4	61.4	85.8	2.4	5.1	5.1	5.0	0
Carafe	60.9	60.1	745.4	10.7	48.2	67.8	70.5	88.7	1.6	3.9	4.6	6.4	+
vorläufige Bewertung nach z	wei Prüfjah	ren											
Germina	62.3	61.5	776.9	10.9	45.3	69.4	70.5	90.9	1.4	3.8	4.0	6.8	+
Mauritia	63.7	62.7	793.0	10.5	46.4	69.6	63.0	89.3	1.6	4.3	4.0	6.1	+
Isotta	62.8	61.8	774.8	10.7	52.2	69.1	73.5	90.3	1.6	4.6	4.7	6.2	+
Beatrix	66.2	65.1	812.0	10.5	47.1	67.8	61.4	86.2	2.0	4.3	4.7	5.5	(+)
Cristalia	62.1	61.4	769.3	11.1	46.6	72.5	61.8	89.2	1.4	4.6	4.0	6.0	(+)
Carvilla	62.4	61.2	774.4	10.6	48.2	67.8	59.8	87.0	1.9	4.4	4.5	5.5	(+)
NFC Tipple	63.2	62.1	781.8	10.3	47.9	68.8	69.6	89.3	1.8	4.3	4.3	6.3	+
Trendbewertung nach einem		00.6	700.5	40.6	4= -	00.0	00 :	00 =			0 - 1	0.5	
Troon	63.6	62.9	786.3	10.9	47.0	69.8	69.1	90.7	1.2	3.9	3.7	6.9	+
Christina	66.3	65.4	818.1	10.9	43.5	69.8	58.4	88.8	1.4	4.5	3.6	5.9	(+)
Mittel	63.6	62.7	768	10.7	46.5	69.9	66.3	89.1	1.6	4.0	4.0	6.5	+

Quelle: LfL, IPZ 2, Sort. 182 2003-2005, Berechnung mit LSMEANS; Mittel aus 33 Versuchen, Braugerstenpreis 12.60 €/dt, Futtergerstenpreis 9.5 €/dt

5.2 Ertragsleistung und Kornqualität der Sommergerste 2003-2005, faktoriell

Sorte	St.	Korn- ertrag	Marktw ertrag	Geldroh- ertrag	Roh- prot.	TKG	hl- Gewicht	So	ortierung in	%	Kornaus- bildung	Spelzen- feinheit	-	ıalitäts- lex
		dt/ha	dt/ha	€/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Barke	1	56.7	52.7	702	10.7	46	71	66.6	89.3	1.8	3.1	3.0	7.6	++
	2	62.2	58.0	771	11.1	47	72	69.6	89.9	1.8	3.1	3.0	7.8	++
	Mittel	59.5	55.4	736	10.9	47	72	68.1	89.6	1.8	3.1	3.0	7.7	++
Pasadena	1	59.2	52.6	725	10.3	43	69	56.4	84.7	2.1	4.1	3.8	5.8	(+)
	2	66.6	60.8	821	10.7	45	70	64.5	88.0	1.7	3.8	3.8	6.6	+
	Mittel	62.9	56.7	773	10.5	44	70	60.4	86.4	1.9	4.0	3.8	6.2	+
Annabell	1	62.6	57.1	772	10.3	42	68	56.6	87.0	1.9	3.7	3.6	6.1	+
	2	68.8	62.9	848	10.8	43	70	61.7	87.9	1.7	3.5	3.7	6.6	+
	Mittel	65.7	60.0	810	10.5	43	69	59.1	87.4	1.8	3.6	3.7	6.3	+
Ursa	1	62.1	58.6	772	10.4	44	69	69.6	91.0	1.4	3.8	3.6	6.9	+
	2	68.3	64.6	849	10.9	45	70	72.4	91.5	1.3	3.7	3.6	7.2	++
	Mittel	65.2	61.6	810	10.7	44	69	71.0	91.3	1.4	3.7	3.6	7.1	++
Auriga	1	59.1	54.5	731	10.5	45	71	61.4	88.9	1.5	4.0	3.5	6.5	+
	2	65.3	61.1	810	11.0	46	72	67.5	90.2	1.3	3.8	3.3	7.2	++
	Mittel	62.2	57.8	770	10.8	46	72	64.5	89.6	1.4	3.9	3.4	6.9	+
Braemar	1	58.4	55.6	727	10.5	46	69	74.2	93.4	1.0	3.6	4.3	7.0	+
	2	65.5	62.6	817	10.9	48	71	79.2	94.3	0.9	3.4	4.1	7.6	++
	Mittel	61.9	59.1	772	10.7	47	70	76.7	93.8	1.0	3.5	4.2	7.3	++
Margret	1	61.2	58.1	762	10.5	46	72	72.9	92.6	1.0	4.1	3.5	7.2	++
	2	66.5	63.0	827	11.0	47	72	75.5	92.5	1.1	4.0	3.4	7.5	++
	Mittel	63.9	60.6	794	10.8	46	72	74.2	92.5	1.0	4.0	3.5	7.4	++
Tocada	1	62.8	56.5	595	10.0	49	69	59.3	85.2	2.0	4.9	4.8	5.1	(+)
	2	70.8	64.6	671	10.4	51	70	65.5	87.2	1.7	4.5	4.8	5.7	(+)
	Mittel	66.8	60.6	633	10.2	50	70	62.4	86.2	1.8	4.7	4.8	5.4	(+)

Quelle: LfL, IPZ 2, Sort. 182 2003-2005, 3 jährig geprüfte Sorten mit jeweils 2 Behandlungsstufen

5.2 Ertragsleistung und Kornqualität der Sommergerste 2003-2005, faktoriell -Fortsetzung

Sorte	St.	Korn- ertrag	Marktw ertrag	Geldroh- ertrag	Roh- prot.	TKG	hl- Gewicht		ortierung ir	ı % 	Kornaus- bildung	Spelzen- feinheit	-	ıalitäts- dex
		dt/ha	dt/ha	€/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Class	1	58.3	53.7	721	10.5	46	71	63.7	88.6	1.3	4.2	4.0	6.3	+
	2	65.4	60.9	811	10.8	48	72	70.2	90.6	1.0	3.9	3.8	7.0	+
	Mittel	61.9	57.3	766	10.7	47	71	67.0	89.6	1.2	4.0	3.9	6.7	+
Xanadu	1	60.0	55.3	742	10.9	45	71	70.6	88.9	1.4	3.7	3.7	7.1	++
	2	66.5	61.8	824	11.2	47	71	75.3	90.5	1.2	3.3	3.6	7.7	++
	Mittel	63.2	58.6	783	11.1	46	71	72.9	89.7	1.3	3.5	3.6	7.4	++
Belana	1	61.8	56.3	762	10.4	44	69	60.8	87.6	1.3	3.2	3.6	6.7	+
	2	68.0	61.9	838	10.8	45	70	64.8	87.7	1.4	3.2	3.5	7.1	++
	Mittel	64.9	59.1	800	10.6	44	70	62.8	87.7	1.4	3.2	3.5	6.9	+
Simba	1	62.6	56.1	592	10.5	46	70	59.0	84.9	2.6	5.1	5.2	4.8	0
	2	69.1	62.8	654	10.8	48	71	64.0	86.8	2.3	5.0	5.0	5.3	(+)
	Mittel	65.8	59.4	623	10.7	47	70	61.5	85.9	2.4	5.0	5.1	5.1	(+)
Carafe	1	56.7	51.7	700	10.4	47	67	68.3	88.2	1.7	4.0	4.6	6.1	+
	2	64.0	59.2	792	10.9	49	69	72.9	89.4	1.5	3.7	4.6	6.7	+
	Mittel	60.4	55.4	746	10.6	48	68	70.6	88.8	1.6	3.9	4.6	6.4	+
Mittel	1	60.1	55.3	716	10.5	45	70	64.6	88.5	1.6	4.0	3.9	6.4	+
	2	66.7	61.9	795	10.9	47	71	69.5	89.7	1.5	3.8	3.8	7.0	+
	Mittel	63.4	58.6	755	10.7	46	70	67.0	89.1	1.5	3.9	3.9	6.6	+

Quelle: LfL, IPZ 2, Sort. 182 2003-2005, 3 jährig geprüfte Sorten mit jeweils 2 Behandlungsstufen

5.3 Malzqualität der Sommergerste 2003-2005

	Roh-	lösl.N	ELG	VZ 45°C	Visko-	Bra-	Friabili-	Extrakt	Endver-	Farbe	_	ualitäts-
Sorte		mg/100g			sität	bender	meter		gärung	EBC	ind	dex
	%	MTS	%	%	mPa*s	Nm	%	%	%		korr.	Symbol
abschließende Bewertung nach	n drei Prüfj	ahren										
Barke	9.9	673	42.6	42.9	1.56	113	80.6	82.7	84.9	3.5	8.7	+++
Pasadena	9.6	656	42.7	40.9	1.54	106	86.8	82.7	85.0	3.2	8.9	+++
Annabell	9.4	648	43.3	39.5	1.53	99	91.5	82.5	84.7	3.4	8.8	+++
Ursa	9.7	730	47.4	40.5	1.53	98	90.6	82.8	84.6	4.0	8.7	+++
Auriga	9.7	688	44.5	39.8	1.53	97	88.5	81.9	84.7	3.6	8.2	+++
Braemar	9.6	685	45.0	43.1	1.53	95	90.1	82.4	85.0	3.7	8.9	+++
Margret	10.0	678	42.3	45.1	1.54	104	83.2	81.5	85.1	3.1	8.3	+++
Class	10.0	671	42.2	44.0	1.53	106	82.8	82.4	85.3	3.2	8.8	+++
Xanadu	10.0	645	40.7	39.8	1.54	106	84.0	81.9	82.8	3.4	7.8	++
Belana	9.8	758	48.4	46.7	1.55	101	89.1	82.4	83.8	4.6	8.7	+++
Carafe	9.8	722	46.2	45.3	1.54	100	88.8	83.4	85.8	3.4	9.6	+++
vorläufige Bewertung nach zwe	i Prüfjahre	n										
Germina	9.8	661	42.3	37.0	1.55	105	88.0	82.4	84.5	3.4	8.3	+++
Mauritia	9.7	674	43.7	44.2	1.53	104	88.6	83.1	85.0	3.6	9.4	+++
Isotta	9.6	666	43.3	42.6	1.54	102	87.3	82.5	85.3	3.8	8.9	+++
Beatrix	9.7	702	45.2	49.7	1.53	104	87.1	82.9	85.1	4.0	9.6	+++
Cristalia	9.7	680	44.3	43.1	1.54	102	87.2	82.5	85.0	4.1	8.8	+++
Carvilla	9.8	639	40.9	39.1	1.56	111	84.4	81.4	82.7	3.4	7.5	++
NFC Tipple	9.4	648	43.6	44.9	1.55	110	84.1	83.3	85.0	3.5	9.4	+++
Trendbewertung nach einem F											-	
Troon	9.6	691	45.3	43.7	1.54	102	86.6	83.0	84.6	3.8	9.0	+++
Christina	9.6	712	46.7	41.6	1.53	103	89.2	82.2	84.7	4.0	8.5	+++
Mittel	9.7	681	44.0	42.7	1.54	103	87.0	82.5	84.7	3.6	8.5	+++

Quelle: LfL, IPZ 2, Sort. 182 2003-2005, Berechnung mit LSMEANS

5.4 Malzqualität der Sommergerste 2003-2005, faktoriell

		Roh-	lösl.N	ELG	VZ 45°C	Visko-	Bra-	Friabili-	Extrakt	Endver-	Farbe	Malzqu	ualitäts-
Sorte	St.	protein	mg/100g			sität	bender	meter		gärung	EBC	ine	dex
		%	MTS	%	%	mPa*s	Nm	%	%	%		korr.	Symbol
Barke	1	9.8	670	43.1	43.5	1.55	112	81.0	82.6	85.1	3.5	8.7	+++
	2	10.0	670	41.9	42.1	1.56	115	80.2	82.8	84.7	3.5	8.6	+++
	MW	9.9	670	42.5	42.8	1.56	113	80.6	82.7	84.9	3.5	8.6	+++
Pasadena	1	9.6	651	42.8	41.7	1.54	107	86.1	82.5	84.8	3.4	8.7	+++
	2	9.7	655	42.4	39.9	1.53	106	87.4	82.9	85.1	3.1	8.9	+++
	MW	9.6	653	42.6	40.8	1.54	106	86.7	82.7	85.0	3.2	8.8	+++
Annabell	1	9.3	646	43.7	40.3	1.52	98	92.3	82.4	85.0	3.4	8.9	+++
	2	9.5	644	42.7	38.5	1.53	99	90.7	82.5	84.5	3.4	8.7	+++
	MW	9.4	645	43.2	39.4	1.53	99	91.5	82.5	84.7	3.4	8.8	+++
Ursa	1	9.6	716	46.7	41.2	1.53	98	90.6	82.6	84.8	3.8	8.8	+++
	2	9.7	737	47.8	39.5	1.54	98	90.4	82.9	84.3	4.1	8.6	+++
	MW	9.7	727	47.2	40.3	1.53	98	90.5	82.7	84.6	4.0	8.7	+++
Auriga	1	9.5	683	45.1	40.1	1.53	96	89.5	81.9	85.0	3.5	8.4	+++
	2	9.9	688	43.6	39.2	1.53	97	87.3	81.7	84.3	3.6	8.0	++
	MW	9.7	686	44.4	39.7	1.53	97	88.4	81.8	84.7	3.6	8.2	+++
Braemar	1	9.5	680	45.1	43.0	1.52	95	90.6	82.3	85.1	3.7	8.9	+++
	2	9.7	685	44.5	42.9	1.53	96	89.5	82.5	85.0	3.7	8.9	+++
	MW	9.6	683	44.8	42.9	1.53	95	90.0	82.4	85.0	3.7	8.9	+++
Margret	1	10.0	671	42.3	44.3	1.53	103	84.3	81.5	85.0	3.1	8.3	+++
	2	10.1	679	42.0	45.6	1.54	105	82.0	81.5	85.1	3.1	8.3	+++
	MW	10.0	675	42.1	44.9	1.54	104	83.1	81.5	85.0	3.1	8.3	+++

Quelle: LfL, IPZ 2, Sort. 182 2003-2005, 3 jährig geprüfte Sorten mit jeweils 2 Behandlungsstufen

5.4 Malzqualität der Sommergerste 2003-2005, faktoriell - Fortsetzung

		Roh-	lösl.N	ELG	VZ 45°C	Visko-	Bra-	Friabili-	Extrakt	Endver-	Farbe	Malzqu	ıalitäts-
Sorte	St.	protein	mg/100g			sität	bender	meter		gärung	EBC	ind	dex
		%	MTS	%	%	mPa*s	Nm	%	%	%		korr.	Symbol
Class	1	9.9	666	42.3	44.7	1.53	106	83.3	82.3	85.5	3.3	8.8	+++
	2	10.1	671	41.8	43.1	1.53	106	82.2	82.5	85.1	3.2	8.7	+++
	MW	10.0	668	42.0	43.9	1.53	106	82.8	82.4	85.3	3.2	8.7	+++
Xanadu	1	9.9	642	40.9	39.9	1.53	105	85.0	81.9	82.9	3.4	7.9	++
	2	10.1	642	40.2	39.4	1.54	107	83.0	81.7	82.7	3.4	7.6	++
	MW	10.0	642	40.5	39.7	1.54	106	84.0	81.8	82.8	3.4	7.8	++
Belana	1	9.8	745	47.8	46.5	1.55	101	89.6	82.3	83.7	4.5	8.7	+++
	2	9.9	764	48.7	46.6	1.55	101	88.5	82.4	83.8	4.7	8.7	+++
	MW	9.8	755	48.2	46.5	1.55	101	89.0	82.4	83.7	4.6	8.7	+++
Carafe	1	9.6	717	46.7	46.1	1.54	99	90.0	83.4	86.0	3.3	9.7	+++
	2	10.0	721	45.3	44.4	1.53	102	87.5	83.4	85.5	3.4	9.4	+++
	MW	9.8	719	46.0	45.2	1.54	100	88.8	83.4	85.7	3.4	9.6	+++
Mittel	1	9.7	681	44.2	42.8	1.53	102	87.5	82.3	84.9	3.5	8.7	+++
	2	9.9	687	43.7	41.9	1.54	103	86.3	82.5	84.6	3.6	8.6	+++
	MW	9.8	684	44.0	42.4	1.54	102	86.9	82.4	84.7	3.6	8.7	+++

Quelle: LfL, IPZ 2, Sort. 182 2003-2005, 3 jährig geprüfte Sorten mit jeweils 2 Behandlungsstufen

5.5 Ertragsleistung und Kornqualität der Sommergerste 2005

Sorte	Anz. Orte	Korn- ertrag	Marktw ertrag	Geldroh- ertrag	Roh- prot.	TKG	hl- Gewicht	So	rtierung ir	า %	Kornaus- bildung	Spelzen- feinheit	-	ualitäts- dex
		dt/ha	dt/ha	€/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Barke	11	52.9	49.8	657	11.0	46	70	66.2	90.1	1.6	3.0	2.9	7.6	++
Pasadena	11	56.3	51.0	693	10.7	44	67	58.8	87.1	1.8	3.8	3.5	6.2	+
Annabell	11	60.4	56.1	747	10.6	42	67	58.6	89.0	1.5	3.6	3.5	6.3	+
Ursa	11	59.0	56.3	735	10.9	44	67	71.6	92.5	1.3	4.1	3.5	6.9	+
Auriga	11	55.2	51.6	685	10.8	45	70	65.8	90.7	1.3	3.8	3.6	6.8	+
Braemar	11	56.4	54.0	703	10.6	46	68	75.2	94.4	1.0	3.6	4.3	7.0	+
Margret	11	58.7	56.2	732	10.7	46	70	74.0	93.8	0.8	4.0	3.5	7.2	++
Tocada	11	61.0	56.5	579	10.2	48	67	58.9	87.6	2.1	5.0	5.0	4.8	0
Class	11	55.6	52.6	691	10.7	47	69	65.3	91.3	1.2	4.1	3.9	6.4	+
Xanadu	11	58.2	55.6	725	11.0	45	69	71.7	92.7	1.0	3.5	3.4	7.4	++
Belana	11	60.0	57.0	747	10.8	44	68	69.6	92.4	1.0	2.7	3.2	7.7	++
Simba	11	60.5	56.0	574	10.7	47	68	62.9	88.1	1.9	4.7	4.9	5.3	(+)
Carafe	11	55.1	52.4	686	10.8	48	66	73.4	93.0	1.2	3.9	4.7	6.4	+
Germina	11	57.2	54.6	713	11.0	45	68	69.5	92.5	1.1	3.9	3.8	6.7	+
Mauritia	11	58.5	56.0	729	10.5	46	68	67.0	92.4	1.2	4.2	3.7	6.5	+
Isotta	11	55.6	52.9	692	10.6	52	67	74.2	92.6	1.2	4.6	4.7	6.1	+
Beatrix	11	58.9	53.6	726	10.3	46	66	61.0	87.0	1.9	4.3	4.6	5.4	(+)
Cristalia	11	56.3	52.1	696	11.0	45	71	59.8	90.1	1.1	4.7	4.1	5.7	(+)
Carvilla	11	57.6	53.5	713	10.5	48	66	62.4	89.7	1.4	4.4	4.6	5.5	(+)
NFC Tipple	11	57.1	53.4	708	10.2	48	67	70.6	91.0	1.6	4.5	4.4	6.1	+
Troon	11	57.6	55.0	718	10.9	46	68	69.4	92.6	1.0	3.9	3.6	6.8	+
Christina	11	60.3	57.1	750	10.9	43	68	58.7	90.7	1.1	4.5	3.5	5.9	(+)
Mittel Hauptsortiment		57.7	54.2	700	10.7	46	68	66.6	91.0	1.3	4.0	4.0	6.4	+

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 11 Orten (WP =4 Orte), Berechnung mit LSMEANS

5.5 Ertragsleistung und Kornqualität der Sommergerste 2005 - Fortsetzung

Sorte	Anz. Orte	Korn- ertrag	Marktw ertrag	Geldroh- ertrag	Roh- prot.	TKG	hl- Gewicht	So	rtierung ir	ı %	Kornaus- bildung	Spelzen- feinheit	•	ualitäts- dex
		dt/ha	dt/ha	€/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Wertprüfung														
LOCH 02098	4	62.9	58.3	779	10.5	49	68	70.3	90.3	1.2	4.0	4.4	6.4	+
LINI 02110	4	58.3	55.2	725	10.3	47	69	72.9	93.3	1.0	3.2	3.5	7.6	++
Westminster	4	59.0	55.2	732	10.8	44	64	65.5	88.8	1.7	4.2	4.5	5.7	(+)
NORD 02124	4	59.4	56.4	739	10.8	47	69	67.7	92.8	0.8	5.0	4.0	5.9	(+)
Marthe	4	61.0	57.0	757	11.3	44	68	65.4	91.3	1.1	3.0	3.1	7.3	++
Sophie	4	58.5	55.0	726	10.8	42	69	61.2	91.9	0.8	4.0	2.8	6.7	+
Power	4	61.5	57.2	762	10.4	45	69	50.4	87.0	1.6	4.6	3.8	5.2	(+)
Sebastian	4	60.6	57.5	754	10.2	45	70	66.1	91.5	1.1	3.8	3.3	6.9	+
ECK 02138	4	60.3	54.8	743	10.7	47	66	55.5	85.7	2.8	4.1	4.3	5.3	(+)
Gesamtmittel		58.4	54.8	713	10.7	46	68	65.8	90.8	1.3	4.0	3.9	6.4	+

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 11 Orten (WP =4 Orte), Berechnung mit LSMEANS

5.6 Ertragsleistung und Kornqualität der Sommergerste 2005 – Orte, faktoriell

Ort	St.	Korn- ertrag	Marktw ertrag	Geldroh- ertrag	Roh- prot.	TKG	hl- Gewicht	So	rtierung ir	า %	Kornaus- bildung		•	ualitäts- dex
		dt/ha	dt/ha	€/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Straßmoos	1	56.2	52.7	683	10.5	45	67	55.0	86.0	2.0	4.6	4.7	4.9	0
	2	56.4	51.5	681	10.9	45	68	55.3	85.8	2.0	4.5	4.9	4.9	0
	Mittel	56.3	52.1	682	10.7	45	67	55.2	85.9	2.0	4.5	4.8	4.9	0
Haar	1	66.7	57.8	797	11.2	40	67	34.8	79.0	2.1	5.0	4.0	3.8	(-)
	2	67.6	60.0	812	11.1	40	68	36.2	81.3	1.8	4.6	4.1	4.0	(-)
	Mittel	67.2	58.9	804	11.1	40	68	35.5	80.1	1.9	4.8	4.1	3.9	(-)
Osterseeon	1	52.6	48.5	636	10.9	41	63	54.5	85.7	2.5	4.6	4.8	4.5	0
	2	61.4	58.1	746	10.7	45	65	68.1	92.1	1.4	4.3	4.6	5.8	(+)
	Mittel	57.0	53.3	691	10.8	43	64	61.3	88.9	1.9	4.5	4.7	5.1	(+)
Schmidhausen	1	50.0	41.6	593	13.1	39	62	40.5	75.2	5.0	4.8	4.3	3.8	(-)
	2	61.8	57.4	751	12.6	43	65	55.1	85.3	2.9	4.1	4.0	5.4	(+)
	Mittel	55.9	49.5	672	12.8	41	63	47.8	80.3	4.0	4.5	4.2	4.5	0
Hartenhof	1	35.1	32.9	426	10.2	41	67	58.8	91.1	1.0	3.9	4.0	5.9	(+)
	2	37.7	35.3	457	10.3	41	67	59.1	90.7	1.2	3.6	3.9	6.1	+
	Mittel	36.4	34.1	441	10.2	41	67	59.0	90.9	1.1	3.8	3.9	6.0	(+)
Almesbach	1	48.8	47.6	598	13.5	51	70	85.3	97.7	0.3	3.6	3.6	8.1	+++
	2	48.9	48.3	600	13.4	52	71	90.0	98.8	0.2	3.3	3.5	8.7	+++
	Mittel	48.8	48.0	599	13.4	51	71	87.6	98.2	0.3	3.5	3.6	8.4	+++
Grafenreuth	1	64.6	61.7	786	9.3	50	69	77.8	95.5	0.7	4.2	3.7	7.2	++
	2	72.0	70.8	882	9.2	54	71	90.0	98.4	0.3	3.7	3.6	8.4	+++
	Mittel	68.3	66.3	834	9.3	52	70	83.9	96.9	0.5	4.0	3.7	7.8	++
Brunn	1	61.4	59.5	749	9.4	49	69	83.5	96.9	0.6	3.8	3.9	7.7	++
	2	63.2	61.9	775	9.4	51	70	89.0	98.0	0.5	3.6	3.8	8.2	+++
	Mittel	62.3	60.7	762	9.4	50	69	86.2	97.4	0.5	3.7	3.8	8.0	++

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 22 Sorten mit jeweils 2 Behandlungsstufen

5.6 Ertragsleistung und Kornqualität der Sommergerste 2005 – Orte, faktoriell - Fortsetzung

Ort	St.	Korn- ertrag dt/ha	Marktw ertrag dt/ha	Geldroh- ertrag €/ha	Roh- prot. %	TKG g	hl- Gewicht kg		rtierung ir 		Kornaus- bildung 1-9	Spelzen- feinheit 1-9	•	ualitäts- dex Symbol
Bieswang	1	48.9	47.1	596	10.3	49	68	79.5	96.3	0.5	3.6	3.8	7.6	++
	2	50.8	49.3	621	10.1	50	69	82.3	97.0	0.4	3.5	3.7	7.9	++
	Mittel	49.8	48.2	608	10.2	50	69	80.9	96.7	0.5	3.6	3.7	7.7	++
Arnstein	1	66.9	63.2	813	10.1	45	71	57.1	90.7	1.2	4.2	3.5	6.1	+
	2	69.3	65.9	844	10.1	47	72	66.5	93.5	0.7	3.7	3.3	7.2	++
	Mittel	68.1	64.5	828	10.1	46	72	61.8	92.1	1.0	4.0	3.4	6.6	+
Günzburg	1	61.0	57.9	742	10.0	45	68	65.6	90.6	1.5	4.2	3.6	6.4	+
	2	67.0	64.1	815	9.5	50	70	80.4	95.7	0.6	3.2	3.6	8.0	++
	Mittel	64.0	61.0	778	9.7	47	69	73.0	93.2	1.0	3.7	3.6	7.2	++
Mittel	1	55.7	51.9	674	10.7	45	67	62.9	89.5	1.6	4.2	4.0	6.0	(+)
	2	59.7	56.6	726	10.7	47	68	70.2	92.4	1.1	3.8	3.9	6.8	+
	Mittel	57.7	54.2	700	10.7	46	68	66.6	91.0	1.3	4.0	4.0	6.4	+

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 22 Sorten mit jeweils 2 Behandlungsstufen

5.7 Malzqualität der Sommergerste 2005

	Anz.	Roh-	lösl.N	ELG	VZ 45°C	Visko-	Bra-	Friabili-	Extrakt	Endver-	Farbe	Malzqu	ualitäts-
Sorte	Orte	protein	mg/100g			sität	bender	meter		gärung	EBC	ind	dex
		%	MTS	%	%	mPa*s	Nm	%	%	%		korr.	Symbol
Barke	6	10.2	639	39.2	35.2	1.60	123	69.5	81.8	83.4	3.1	6.8	+
Pasadena	6	9.6	676	44.6	34.7	1.57	116	79.9	82.1	83.5	3.6	7.3	++
Annabell	6	9.6	674	44.2	33.7	1.55	101	86.8	81.6	83.0	3.5	7.2	++
Ursa	6	9.7	751	48.8	38.3	1.55	101	86.8	82.0	83.4	4.4	7.7	++
Auriga	6	10.1	703	43.7	38.8	1.55	104	79.8	81.1	85.0	3.2	7.3	++
Braemar	6	10.0	644	40.8	37.3	1.55	102	83.8	82.1	84.4	3.2	8.0	++
Margret	6	10.1	646	40.1	42.9	1.56	113	73.0	81.0	84.0	3.0	7.3	++
Class	6	10.0	657	41.2	39.7	1.57	117	72.0	82.3	84.2	3.2	7.7	++
Xanadu	6	10.0	713	45.0	42.6	1.55	110	75.8	82.9	82.0	4.0	7.8	++
Belana	6	9.8	741	47.8	38.9	1.54	108	84.6	82.3	82.8	4.9	7.7	++
Carafe	6	9.8	715	45.9	44.6	1.56	108	85.1	83.9	84.9	3.3	9.5	+++
Germina	6	10.1	728	45.1	38.1	1.55	105	83.9	82.2	85.0	3.3	8.0	++
Mauritia	6	9.8	728	46.5	41.5	1.54	105	87.1	82.6	84.3	3.9	8.5	+++
Isotta	6	10.0	715	44.8	37.4	1.57	115	76.2	81.5	83.8	4.2	7.0	+
Beatrix	6	9.7	703	45.6	42.2	1.55	107	84.4	81.4	83.5	4.0	7.7	++
Cristalia	6	10.2	668	41.0	36.3	1.57	111	76.9	81.6	83.1	3.9	7.0	+
Carvilla	6	9.9	664	41.8	38.2	1.57	113	78.4	82.3	83.1	3.3	7.6	++
NFC Tipple	6	9.6	623	40.8	37.1	1.58	125	71.5	81.8	83.0	3.5	7.0	+
Troon	6	9.9	678	43.1	36.3	1.58	116	76.0	82.9	82.7	3.5	7.6	++
Christina	6	9.6	722	47.2	34.4	1.55	110	83.9	81.9	83.2	4.2	7.2	++
Mittel Hauptsortim.		9.9	689	43.9	38.4	1.56	110	79.8	82.1	83.6	3.7	7.6	++

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 6 Orten (WP3= 3 Orte), Berechnung mit LSMEANS

5.7 Malzqualität der Sommergerste 2005 - Fortsetzung

Sorte	Anz. Orte	Roh- protein	lösl.N mg/100g	ELG	VZ 45°C	Visko- sität	Bra- bender	Friabili- meter	Extrakt	Endver- gärung	Farbe EBC	-	ualitäts- dex
		%	MTS	%	%	mPa*s	Nm	%	%	%		korr.	Symbol
Wertprüfung													
LOCH 02098	3	9.7	629	40.7	36.9	1.66	140	66.3	82.4	81.7	3.6	6.8	+
Westminster	3	9.8	740	47.4	46.3	1.54	113	79.6	84.0	83.1	4.2	9.1	+++
BRGD 02122	3	9.6	803	52.7	39.9	1.55	110	87.4	81.6	83.9	5.5	7.5	++
NORD 02124	3	9.7	800	51.6	41.4	1.56	106	85.7	82.7	84.1	4.8	8.2	+++
Marthe	3	10.3	724	44.4	42.9	1.54	110	81.1	81.9	84.1	4.1	7.9	++
Sophie	3	9.7	707	45.9	39.7	1.55	108	82.7	82.5	84.0	3.4	8.1	+++
Power	3	9.5	666	44.2	38.4	1.54	107	81.3	82.2	84.1	3.2	7.9	++
Sebastian	3	9.7	611	39.5	35.3	1.60	119	72.8	82.8	83.4	3.6	7.7	++
ECK 02138	3	9.8	625	39.9	34.0	1.65	125	74.8	81.8	83.2	3.3	7.0	+
Gesamtmittel		9.8	686	43.9	38.6	1.57	110	80.0	82.2	83.7	3.7	7.7	++

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 6 Orten (WP3= 3 Orte), Berechnung mit LSMEANS

5.8 Malzqualität der Sommergerste 2005 – Orte, faktoriell

Out	St.	Roh-	lösl.N	ELG	VZ 45°C	Visko-	Bra-	Friabili-	Extrakt		Farbe	-	ualitäts-
Ort) St.	protein %	mg/100g MTS	%	%	sität mPa*s	bender Nm	meter %	%	gärung %	EBC	korr.	dex Symbol
Arnstein	1	10.2	632	38.7	34.4	1.55	106	81.9	81.6	83.5	3.6	7.3	++
	2	10.3	650	39.4	35.2	1.55	106	82.2	81.9	83.5	3.7	7.5	++
	MW	10.3	641	39.0	34.8	1.55	106	82.1	81.8	83.5	3.7	7.4	++
Brunn	1	8.8	686	48.8	42.7	1.54	107	82.8	82.8	84.6	3.6	8.7	+++
	2	9.0	659	45.9	39.7	1.55	111	79.1	82.6	83.9	3.6	8.1	+++
	MW	8.9	673	47.4	41.2	1.54	109	81.0	82.7	84.2	3.6	8.4	+++
Grafenreuth	1	8.6	646	47.4	39.2	1.57	103	85.0	83.4	84.5	3.4	8.9	+++
	2	8.6	637	46.8	38.7	1.61	101	84.6	83.7	83.9	3.3	8.9	+++
	MW	8.6	641	47.1	38.9	1.59	102	84.8	83.5	84.2	3.4	8.9	+++
Günzburg	1	10.7	755	44.2	37.7	1.56	119	77.8	81.2	83.4	3.4	6.7	+
	2	10.4	723	43.6	36.1	1.57	113	77.8	82.8	83.5	3.4	7.5	++
	MW	10.5	739	43.9	36.9	1.57	116	77.8	82.0	83.4	3.4	7.1	++
Haar	1	10.9	745	42.9	35.4	1.54	121	73.9	80.6	81.8	4.5	5.7	(+)
	2	10.7	752	44.0	36.2	1.54	118	77.0	80.9	81.8	4.5	6.1	+
	MW	10.8	749	43.4	35.8	1.54	119	75.4	80.7	81.8	4.5	5.9	(+)
Hartenhof	1	10.2	697	42.5	43.0	1.57	109	77.8	81.7	84.6	3.4	7.8	++
	2	10.3	692	42.2	42.6	1.58	110	77.3	81.8	84.4	3.4	7.8	++
	MW	10.2	694	42.4	42.8	1.57	109	77.6	81.7	84.5	3.4	7.8	++
Mittel	1	9.9	693	44.1	38.8	1.56	111	79.9	81.9	83.7	3.7	7.5	++
	2	9.9	686	43.7	38.1	1.57	110	79.7	82.3	83.5	3.7	7.7	++
	MW	9.9	689	43.9	38.4	1.56	110	79.8	82.1	83.6	3.7	7.6	++

Quelle: LfL, IPZ 2, Sort. 182 2005, Mittel aus 20 Sorten mit jeweils 2 Behandlungsstufen

6 Übersicht über die geprüften 6-zeiligen Wintergerstensorten 2005 und deren Abstammung

Sorten	Zu- gelassen seit:	Verm. Fläche ha 1)	Abstammung	Sorteninhaber/Züchter (Kurzform)
Naomie	2003	109	(Julia x NS 90517/16) x Carola	ACK
Ludmilla	1999	76	Hasso x (Banteng x Venus)	FIRL
Lomerit	2001	60	(Askanova x Grete) x Ozeane x 1332-99	LOCH
Merlot	2002	115	Theresa x Carola	NORD
Franziska	2000	12	Borwina x 277 FF 27	SCOB
Anastasia	2002	-	190-9346 x Catania	SCOB
Elbany	2002	4	Borwina x Kanto Nijo x P 9147	LOCH
Maximiliane	2004	38	Arctic x Areal	SCOB/SYNG
Cinderella	2004	-	(Monika x St.1121) x St.11072	DSVW/IGPZ
Action	2004	-	Hamu x UNPL 1109 x Venus	CARS

1) Zur Feldbesichtigung gemeldete Fläche in Bayern

Quelle: Amtliche Saatenanerkennung

ANSCHRIFTEN DER ZÜCHTER/SORTENINHABER:

ACK	 Saatzucht Dr. J. 	Ackermann & Co	Ringstraße 17	94342 Irlbach
AOIX	Gaatzacht Dr. G.	ACICITIATITI & CO	Trinustiaise ii.	JTJTZ IIIDUUII

BRGD - Saatzucht Breun Josef GdbR, Amselweg 1, 91074 Herzogenaurach

CBCD - Firma Cebeco Saaten GmbH, Postfach 12 32, 29333 Nienhagen

DSVW - DSV-Wintergersten-Gesellschaft bR, Hauptstraße 8, 06408 Biendorf

ECK - W. von Borries-Eckendorf GmBH & Co.; Bielefelder Straße 223, 33818 Leopoldshöhe

EGER - Pflanzenzucht Dr.h.c. Carsten, Inh. Erhardt Eger KG, Postfach 12 61, 23601 Bad Schwartau

FIRL - Saatzuchtw. Firlbeck KG, Johann Firlbeck-Str. 20, 94348 Atting

GRTZ - GRÖTZNER Pflanzenzucht GmbH & Co. KG, 22397 Hamburg

HADM - Saatzucht Hadmersleben GmbH, Kroppenstedter Straße, 39398 Hadmersleben

LIMA - Limagrain Genetics Grandes Cultures, F – 63203 Riom Cedex

LINI - Limagrain Nickerson GmbH. 31232 Edemissen

LOCH - Firma Lochow-Petkus GmbH, Postfach 11 97, 29296 Bergen

MOMO - SARL Adrien Momont et Fils, 7. Rue de Martinval, 59246 Mons-en-Pevele, Frankreich

NORD - Saatzuchtgesellschaft Nordsaat, Saatzucht Langenstein, Hauptstr. 1, 38895 Böhnshausen

SAUN - Saaten-Union, Eisenstr. 12, 30916 Isernhagen

SCOB - SECOBRA Saatzucht GmbH, Lagesche Str. 250, 32657 Lemgo

SEED - SW Seed GmbH, Teendorf, 29582 Hanstedt I

STNG - Saatzuchtges. Streng's Erben GmbH & Co. KG, 97215 Uffenheim

STRG - Dr. Stefan Streng, Aspachhof, 97215 Uffenheim

SYNG - Secobra Recherches S.A., Centre de Bois Henry, 78580 Maule, FRANKREICH

CARS - Pflanzenzucht Dr. h.c.R. Carsten -Inh. Erhardt Eger KG-, 23611 Bad Schwartau

7 Sortenmittelwerte, ein- und mehrjährig

7.1 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2003-2005

Sorte	Korn- ertrag	Marktw ertrag	Roh- protein	TKG	hl- Gewicht		rtierung ir	ı % İ	Kornaus- Spelzen- bildung feinheit		Kornqualitäts- index	
	dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2 mm	1-9	1-9	korr.	Symbol
Ludmilla	75.5	74.3	12.8	49	70	61.7	89.0	1.7	5.1	5.3	4.9	0
Franziska	72.1	70.7	12.2	45	70	56.8	86.6	2.2	5.6	5.3	4.3	0
Lomerit	73.9	71.8	11.8	47	70	53.4	84.9	3.1	6.2	6.0	3.4	(-)
Merlot	73.4	71.7	12.4	44	69	57.5	85.5	2.8	5.7	6.0	3.9	(-)
Naomie	72.4	71.0	12.6	46	66	50.4	83.2	2.3	6.5	6.3	2.7	-
Anastasia	67.9	65.1	12.8	40	68	35.3	74.6	4.5	5.8	5.4	2.7	-
Elbany	73.7	68.7	12.1	38	69	30.0	65.4	7.8	6.3	5.4	2.1	-
Maximiliane	71.3	69.7	12.9	47	69	62.4	86.9	2.6	6.1	6.2	3.9	(-)
Cinderella	73.4	71.3	12.8	44	67	47.2	81.1	3.2	6.5	7.0	2.2	
Mittel	72.6	70.5	12.5	45	69	50.5	81.9	3.3	6.0	5.9	3.3	(-)

Quelle: LfL, IPZ 2, Sort. 151 2003-2005, Berechnung mit LSMEANS

7.2 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2003-2005, faktoriell

Sorte	Stufe	Korn-	Marktw	Roh-	TKG	hl-	So	rtierung ir	ı %	Kornaus-	Spelzen-	Kornqu	ualitäts-
		ertrag dt/ha	ertrag dt/ha	protein %	g	Gewicht kg	>2,8mm	>2,5mm	<2,2 mm	bildung 1-9	feinheit 1-9	inc korr.	lex Symbol
Ludmilla	1	71.1	69.7	12.3	48	69	59.0	87.8	1.9	5.2	5.3	4.6	0
	2	80.0	78.9	13.3	50	70	64.4	90.2	1.5	5.1	5.3	5.1	(+)
	MW	75.5	74.3	12.8	49	70	61.7	89.0	1.7	5.1	5.3	4.9	0
Franziska	1	66.5	64.9	11.9	44	69	52.5	84.5	2.6	5.8	5.4	3.8	(-)
	2	77.7	76.4	12.4	46	70	61.1	88.7	1.8	5.5	5.3	4.7	0
	MW	72.1	70.7	12.2	45	70	56.8	86.6	2.2	5.6	5.3	4.3	0
Lomerit	1	68.4	66.2	11.7	47	70	49.9	83.0	3.5	6.2	6.0	3.2	(-)
	2	79.4	77.4	11.9	48	70	57.0	86.8	2.7	6.3	6.1	3.6	(-)
	MW	73.9	71.8	11.8	47	70	53.4	84.9	3.1	6.2	6.0	3.4	(-)
Merlot	1	69.1	67.2	12.2	44	69	55.1	84.5	3.1	5.7	5.9	3.8	(-)
	2	77.7	76.2	12.6	45	69	60.0	86.4	2.5	5.8	6.0	4.0	(-)
	MW	73.4	71.7	12.4	44	69	57.5	85.5	2.8	5.7	6.0	3.9	(-)
Naomie	1	68.5	67.0	12.4	45	65	46.7	81.8	2.5	6.5	6.2	2.4	-
	2	76.3	74.9	12.9	47	67	54.0	84.6	2.1	6.5	6.4	2.9	-
	MW	72.4	71.0	12.6	46	66	50.4	83.2	2.3	6.5	6.3	2.7	-
Anastasia	1	63.9	60.8	12.6	39	68	30.6	71.4	5.1	6.0	5.5	2.2	-
	2	72.0	69.4	13.1	41	68	40.0	77.7	3.8	5.7	5.3	3.1	(-)
	MW	67.9	65.1	12.8	40	68	35.3	74.6	4.5	5.8	5.4	2.7	-
Elbany	1	68.8	63.4	11.9	37	68	25.4	61.0	8.9	6.4	5.3	1.8	
	2	78.6	74.1	12.4	39	69	34.6	69.8	6.6	6.2	5.4	2.5	-
	MW	73.7	68.7	12.1	38	69	30.0	65.4	7.8	6.3	5.4	2.1	-
Maximiliane	1	67.0	65.2	12.7	46	69	57.7	85.0	3.0	6.2	6.1	3.6	(-)
	2	75.6	74.2	13.0	49	69	67.2	88.9	2.2	6.0	6.2	4.3	0
	MW	71.3	69.7	12.9	47	69	62.4	86.9	2.6	6.1	6.2	3.9	(-)
Cinderella	1	68.6	66.4	12.7	43	67	43.4	79.1	3.5	6.5	7.0	1.9	
	2	78.2	76.2	13.0	45	67	50.9	83.0	2.9	6.5	7.1	2.4	-
	MW	73.4	71.3	12.8	44	67	47.2	81.1	3.2	6.5	7.0	2.2	-
1 = ohne	1	68.0	65.6	12.3	44	68	46.7	79.8	3.8	6.0	5.9	3.0	-
2 = mit WR- u.Fung.einsatz	2	77.3	75.3	12.7	45	69	54.4	84.0	2.9	6.0	5.9	3.6	(-)
Mittel	MW	72.6	70.5	12.5	45	69	50.5	81.9	3.3	6.0	5.9	3.3	(-)

Quelle: LfL, IPZ 2, Sort. 151 2003-2005 3 jährig geprüfte Sorten mit jeweils 2 Behandlungsstufen, Berechnung mit LSMEANS

7.3 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2005

Sorte	Anz. Orte	Korn- ertrag dt/ha	Marktw ertrag dt/ha	Roh- protein %	TKG g	hl- Gewicht kg	So >2,8mm	rtierung ir >2,5mm	1 % <2,2 mm	Kornaus- bildung 1-9	Spelzen- feinheit 1-9	-	ualitäts- dex Symbol
Ludmilla	8	75.7	74.9	12.6	50	71	69.3	93.0	1.1	6.1	6.2	4.4	0
Franziska	8	74.5	73.6	12.0	45	70	63.8	91.3	1.2	6.4	6.3	3.8	(-)
Lomerit	8	78.2	77.0	11.5	48	71	60.6	89.4	1.7	7.1	6.6	3.1	(-)
Merlot	8	76.0	74.7	12.3	45	70	62.5	89.8	1.9	6.3	6.8	3.5	(-)
Naomie	8	72.4	71.2	12.6	46	67	54.4	87.4	1.8	7.1	7.1	2.2	-
Anastasia	8	70.9	69.0	12.9	40	69	37.8	79.9	2.9	6.5	6.4	2.0	
Elbany	8	73.6	69.8	12.2	38	70	30.0	68.9	5.9	7.0	6.0	1.5	
Maximiliane	8	75.1	74.2	12.6	49	71	70.3	92.5	1.2	6.9	6.6	3.8	(-)
Cinderella	8	76.8	75.1	12.7	44	68	51.1	84.5	2.4	7.5	7.6	1.6	
Action	8	75.4	74.6	12.3	50	70	77.5	94.0	1.2	6.3	6.2	4.8	0
Wertprüfung													
Tiffany	3	63.7	62.3	12.9	48	72	53.1	86.0	2.4	5.8	3.9	4.8	0
Verticale	3	65.4	64.9	13.4	57	71	77.5	94.0	1.0	6.0	5.4	5.4	(+)
Alinghi	3	80.1	77.3	12.0	44	70	38.6	79.7	3.5	7.0	6.7	1.6	
Fridericus	3	77.8	77.1	12.8	47	69	75.9	93.5	1.2	6.7	7.0	4.0	(-)
LOCH 02346	3	73.6	72.2	12.3	48	71	67.9	90.8	2.0	7.0	7.0	3.4	(-)
Mittel		73.9	72.5	12.5	47	70	59.3	87.6	2.1	6.6	6.4	3.4	(-)

Quelle: LfL, IPZ 2, Sort. 151 2005, Mittel aus 8 Orten (WP = 3 Orte), Berechnung mit LSMEANS

7.4 Ertragsleistung und Kornqualität der 6-zeiligen Wintergerste 2005 – Orte, faktoriell

Ort	Stufe	Korn- ertrag	Marktw ertrag	Roh- protein	TKG	hl- Gewicht	So	rtierung ir	ı % 	Kornaus- bildung	Spelzen- feinheit	•	ualitäts- dex
		dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2 mm	1-9	1-9	korr.	Symbol
Almesbach	1	48.4	46.4	13.8	43	71	47.6	80.0	4.2	6.6	6.5	2.6	-
	2	52.8	50.8	13.9	43	71	46.7	80.4	3.8	6.9	6.5	2.4	-
	MW	50.6	48.6	13.8	43	71	47.1	80.2	4.0	6.8	6.5	2.5	-
Bieswang	1	66.3	64.1	13.1	44	69	46.4	81.8	3.4	7.1	6.9	1.9	
	2	73.8	72.0	13.4	46	69	53.3	85.8	2.5	6.8	6.8	2.6	-
	MW	70.0	68.0	13.2	45	69	49.9	83.8	2.9	7.0	6.9	2.2	-
Günzburg	1	68.7	66.7	12.8	39	70	37.2	77.0	3.0	6.9	6.6	1.7	
	2	91.5	90.8	13.8	47	72	67.2	93.0	0.8	6.7	6.6	3.8	(-)
	MW	80.1	78.7	13.3	43	71	52.2	85.0	1.9	6.8	6.6	2.7	-
Landsberg	1	76.0	74.6	10.6	48	69	61.2	88.9	1.9	6.9	7.0	3.0	-
	2	80.9	79.6	10.0	48	69	64.3	90.2	1.6	6.8	7.0	3.2	(-)
	MW	78.5	77.1	10.3	48	69	62.7	89.5	1.8	6.9	7.0	3.1	(-)
Rotthalmünster	1	68.8	66.9	13.1	43	68	43.6	81.1	2.9	6.5	6.6	2.2	-
	2	79.3	78.3	13.3	46	69	62.2	90.1	1.3	6.4	6.5	3.6	(-)
	MW	74.1	72.6	13.2	45	69	52.9	85.6	2.1	6.5	6.6	2.8	-
Seligenstadt	1	85.4	84.5	11.4	49	71	70.4	93.3	1.1	6.4	6.0	4.4	0
	2	93.0	92.2	11.4	52	71	83.2	96.2	0.8	6.4	5.9	5.4	(+)
	MW	89.2	88.4	11.4	51	71	76.8	94.8	0.9	6.4	6.0	4.9	0
Straßmoos	1	78.0	75.6	10.9	41	67	42.0	79.8	3.1	7.0	6.7	1.7	
	2	91.5	90.2	10.7	45	69	61.0	90.5	1.4	6.7	6.6	3.2	(-)
	MW	84.7	82.9	10.8	43	68	51.5	85.1	2.2	6.9	6.7	2.4	-
Wolfsdorf	1	68.3	67.4	13.1	44	70	58.5	88.9	1.4	6.7	6.5	3.2	(-)
	2	75.1	74.6	12.8	47	71	78.8	96.0	0.7	6.6	6.5	4.6	0
	MW	71.7	71.0	13.0	46	70	68.6	92.5	1.1	6.7	6.5	3.9	(-)
1 = ohne	1	70.0	68.3	12.3	44	69	50.9	83.8	2.6	6.8	6.6	2.6	-
2 = mit WR- u.Fungizideins.	2	79.7	78.6	12.4	47	70	64.6	90.3	1.6	6.7	6.6	3.6	(-)
Mittel	MW	74.9	73.4	12.4	45	70	57.7	87.1	2.1	6.7	6.6	3.1	(-)

Quelle: LfL, IPZ 2, Sort. 151 2005, Mittel aus 10 Sorten mit jeweils 2 Behandlungsstufen

8 Übersicht über die geprüften 2-zeiligen Wintergerstensorten 2005 und deren Abstammung

Sorte	Zu- lassung seit:	Verm. Fläche ha 1)	Abstammung	Sorteninhaber/Züchter (Kurzform)
Reni	2001	883	(Puffin x Astrid) x St. 604	ACK
Tiffany	1996	3	Labea x Marinka	LOCH
Tafeno	2000	263	(279-176 x Diana) x (279-176 x Sonate)	LOCH
Verticale	2003	546	Target x Intro	LOCH
Duet	1995	17	Marinka x Torrent	NICS
Camera	1998	424	NRPB 87-5685C x Stamm 41	NICS
Carat	2002	278	Volley x Cabrio	NICS
Passion	2002	133	Regina x ECK 1331	STGN
Advance	2002	18	Regina x St. 1331	STGN
Carrero	2001	96	(Puffin x Astrid) x Intro	NORD
Mombasa	2002	-	(Br.652h x Br.1201a) x Astrid	BRGD
Gerval	2000	7	Labea x Intro	FRPE
Finita	2004	335	Ladoga x GW 1662	NORD/SAUN
Antalya	2004	1	Br.2176f x Angora	BRGD/BAYW
Spectrum	2004	69	Pearl x Camera	LINI/NIKS
Dyveke	2003		Hiberna x PF 599-099E	SAUN/ECK
Jorinde	2005		Regina x Tokyo	SAUN/ECK
Campanile	2005	100	(Intro x Sunrise) x Regina	LINI
Escape	2001	15	Intro x Anthere	KRUS
Queen	2005	15	Intro x BE 5687	FRPE

¹⁾ Zur Feldbesichtigung gemeldete Flächen in Bayern Quelle: Amtliche Saatenanerkennung

ANSCHRIFTEN DER ZÜCHTER/SORTENINHABER:

ACK	 Saatzucht Dr. J. 	Ackermann & Co.,	Ringstraße 17,	94342 Irlbach

- BAUB Bauer Wintergersten GbR, Hauptstraße 8, 06408 Biendorf
- BRGD Saatzucht Breun Josef GdbR, Amselweg 1, 91074 Herzogenaurach
- CBC Cebeco Seeds B.V., Vijfhoevenlaan 4, 5251 HH Vlijmen, NIEDERLANDE
- CBCD Firma Cebeco Saaten GmbH, Postfach 12 32, 29333 Nienhagen
- ECK W. von Borries-Eckendorf GmBH & Co.; Bielefelder Straße 223, 33818 Leopoldshöhe
- EGER Pflanzenzucht Dr.h.c. Carsten, Inh. Erhardt Eger KG, Postfach 12 61, 23601 Bad Schwartau
- FIRL Saatzuchtw. Firlbeck KG, Johann Firlbeck-Str. 20, 94348 Atting
- FRPE Dr. Peter Franck Pflanzenzucht Oberlimpurg, 74523 Schwäbisch Hall
- GRTZ GRÖTZNER Pflanzenzucht GmbH & Co. KG, 22397 Hamburg
- HADM Saatzucht Hadmersleben GmbH, Kroppenstedter Straße, 39398 Hadmersleben
- HEGE Saatzucht Dr. Hege GbRmbH, Domäne Hohebuch, 74638 Waldenburg
- KRUS Kruse Saatzucht GmbH & Co. KG, 48155 Münster
- LIMA Limagrain Genetics Grandes Cultures, F 63203 Riom Cedex
- LINI Limagrain Nickerson GmbH. 31232 Edemissen
- LOCH Firma Lochow-Petkus GmbH, Postfach 11 97, 29296 Bergen
- MOMO SARL Adrien Momont et Fils, 7. Rue de Martinval, 59246 Mons-en-Pevele, Frankreich
- NICS Nickerson International Research G.E.I.E., B.P. 1, 63720 Chapes, FRANKREICH
- NORD Saatzuchtgesellschaft Nordsaat, Saatzucht Langenstein, Hauptstr. 1, 38895 Böhnshausen
- SAUN Saaten-Union, Eisenstr. 12, 30916 Isernhagen
- SCOB SECOBRA Saatzucht GmbH, Lagesche Str. 250, 32657 Lemgo
- SEED SW Seed GmbH, Teendorf, 29582 Hanstedt I
- STNG Saatzuchtges. Streng's Erben GmbH & Co. KG, 97215 Uffenheim
- STRG Dr. Stefan Streng, Aspachhof, 97215 Uffenheim

9 Sortenmittelwerte, ein- und mehrjährig

9.1 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2003-2005

Sorte	Korn- ertrag	Marktw ertrag	Roh- prot.	TKG	hl-Ge- wicht	So	rtierung ir	n % 	Kornaus- bildung	Spelzen- feinheit	_	ualitäts- dex
	dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
abschließende Bewertung n	ach drei Pi	rüfjahren		.						•		
Duet	72.0	70.6	12.6	49.4	72.5	51.3	87.3	2.0	4.6	3.2	5.8	(+)
Tiffany	71.5	69.9	12.5	49.8	70.8	58.7	87.2	2.4	4.5	3.3	6.2	+
Camera	72.1	71.3	12.6	50.5	69.0	62.8	90.5	1.2	4.7	5.0	5.3	(+)
Tafeno	72.1	70.9	12.8	51.1	70.9	69.9	91.3	1.7	4.1	3.5	7.0	+
Reni	75.8	75.2	12.6	58.7	71.0	71.1	93.4	0.9	4.4	3.6	6.9	+
Carrero	75.6	74.9	12.7	55.5	69.7	74.2	94.0	1.0	4.5	4.0	6.7	+
Passion	74.0	71.7	12.7	47.0	68.9	44.9	81.1	3.3	5.5	4.4	4.0	(-)
Carat	74.1	73.0	12.2	46.9	71.7	72.7	91.6	1.6	2.8	3.0	8.2	+++
Verticale	74.9	73.9	12.9	55.2	69.8	63.7	90.6	1.5	5.0	4.6	5.5	(+)
Advance	74.2	71.9	12.6	47.5	69.7	43.0	81.5	3.3	5.5	4.1	4.1	0
Mombasa	73.1	72.4	12.9	52.1	70.0	80.9	95.0	1.0	3.6	3.3	8.0	++
Finita	76.5	75.4	12.4	49.5	67.3	70.4	88.9	1.6	4.8	4.7	5.8	(+)
vorläufige Bewertung nach :	zwei Prüfja	hren										
Gerval	73.8	73.1	12.8	59.2	70.2	56.1	86.6	1.2	4.5	4.4	5.4	(+)
Antalya	72.5	71.6	13.4	51.6	70.8	52.8	81.2	1.2	4.7	4.1	5.2	(+)
Spectrum	73.2	72.3	12.5	50.5	69.5	63.5	85.4	1.4	4.8	4.3	5.7	(+)
Jorinde	74.7	72.8	12.6	46.4	68.8	49.4	85.1	2.6	5.6	5.0	3.9	(-)
Campanile	78.3	75.6	11.6	48.1	71.1	43.3	81.0	3.6	5.8	4.4	3.9	(-)
Queen	73.8	73.1	13.3	57.7	69.0	70.3	90.0	1.0	4.5	5.5	5.6	(+)
Trendbewertung nach einer	n Prüfjahr											
Dyveke	72.9	72.3	13.2	53.5	70.9	62.7	82.0	1.0	4.7	3.9	6.0	(+)
Escape	71.0	69.8	12.8	49.7	71.0	48.0	84.1	1.8	5.0	4.4	4.6	0
Mittel	73.8	72.6	12.7	51.5	70.1	60.5	87.4	1.8	4.7	4.1	5.7	(+)

Quelle: LfL, IPZ 2, Sort. 153 2003-2005, Berechnung mit LSMEANS

9.2 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2003-2005, faktoriell

Sorte	Stufe	Korn- ertrag dt/ha	Marktw ertrag dt/ha	Roh- prot.	TKG	hl-Ge- wicht		ortierung ir		Kornaus- bildung 1-9	Spelzen- feinheit 1-9	inc	ualitäts- dex
		uvna	uvna	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Duet	1	67.7	66.3	12.4	49	72	48.6	85.9	2.2	4.6	3.2	5.6	(+)
	2	76.2	74.9	12.9	50	73	53.9	88.7	1.7	4.5	3.3	6.0	(+)
	MW	72.0	70.6	12.6	49	73	51.3	87.3	2.0	4.6	3.2	5.8	(+)
Tiffany	1	66.5	64.8	12.3	49	70	55.3	85.6	2.8	4.6	3.4	5.8	(+)
	2	76.4	75.0	12.7	51	72	62.2	88.8	2.0	4.4	3.3	6.5	+
	MW	71.5	69.9	12.5	50	71	58.7	87.2	2.4	4.5	3.3	6.2	+
Camera	1	67.8	67.0	12.3	50	69	59.1	89.1	1.3	4.9	4.9	5.0	0
	2	76.3	75.6	12.9	52	70	66.5	91.9	1.0	4.6	5.2	5.5	(+)
	MW	72.1	71.3	12.6	51	69	62.8	90.5	1.2	4.7	5.0	5.3	(+)
Tafeno	1	68.3	67.1	12.5	50	71	68.2	90.7	1.9	4.2	3.6	6.7	+
	2	75.9	74.8	13.1	52	71	71.7	92.0	1.5	3.9	3.4	7.3	++
	MW	72.1	70.9	12.8	51	71	69.9	91.3	1.7	4.1	3.5	7.0	+
Reni	1	71.7	71.0	12.3	58	71	68.6	92.6	1.0	4.4	3.6	6.7	+
	2	79.9	79.3	13.0	60	71	73.6	94.1	0.8	4.3	3.6	7.1	++
	MW	75.8	75.2	12.6	59	71	71.1	93.4	0.9	4.4	3.6	6.9	+
Carrero	1	71.8	71.1	12.4	55	69	72.5	93.7	1.0	4.6	3.8	6.6	+
	2	79.5	78.8	13.0	56	70	76.0	94.3	0.9	4.4	4.1	6.8	+
	MW	75.6	74.9	12.7	56	70	74.2	94.0	1.0	4.5	4.0	6.7	+
Passion	1	70.0	67.6	12.5	46	68	41.7	79.0	3.7	5.6	4.4	3.7	(-)
	2	77.9	75.8	12.9	48	69	48.1	83.2	2.9	5.4	4.3	4.4	0
	MW	74.0	71.7	12.7	47	69	44.9	81.1	3.3	5.5	4.4	4.0	(-)
Carat	1	69.3	68.3	11.9	46	71	68.9	90.5	1.6	3.0	3.0	7.8	++
	2	78.9	77.8	12.5	48	72	76.6	92.8	1.7	2.6	3.0	8.6	+++
	MW	74.1	73.0	12.2	47	72	72.7	91.6	1.6	2.8	3.0	8.2	+++

9.2 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2003-2005, faktoriell - Fortsetzung

Sorte	Stufe	Korn- ertrag	Marktw ertrag	Roh- prot.	TKG	hl-Ge- wicht	So	rtierung ir	n % 	Kornaus- bildung	Spelzen- feinheit	•	ualitäts- dex
		dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Verticale	1	70.5	69.5	12.5	54	70	61.5	90.2	1.4	5.1	4.6	5.2	(+)
	2	79.4	78.3	13.3	56	70	65.9	90.9	1.6	4.9	4.5	5.7	(+)
	MW	74.9	73.9	12.9	55	70	63.7	90.6	1.5	5.0	4.6	5.5	(+)
Advance	1	69.5	66.9	12.5	46	69	40.6	79.2	3.9	5.6	4.1	3.9	(-)
	2	78.8	76.9	12.7	49	70	45.4	83.8	2.7	5.4	4.0	4.4	0
	MW	74.2	71.9	12.6	48	70	43.0	81.5	3.3	5.5	4.1	4.1	0
Mombasa	1	68.9	68.3	12.6	51	70	79.1	94.6	1.0	3.8	3.2	7.8	++
	2	77.3	76.6	13.3	53	71	82.6	95.4	0.9	3.4	3.4	8.2	+++
	MW	73.1	72.4	12.9	52	70	80.9	95.0	1.0	3.6	3.3	8.0	++
Gerval	1	69.1	68.2	12.6	58	70	53.2	85.9	1.4	4.6	4.4	5.1	(+)
	2	78.6	78.0	13.1	61	71	58.9	87.3	0.9	4.4	4.4	5.6	(+)
	MW	73.8	73.1	12.8	59	70	56.1	86.6	1.2	4.5	4.4	5.4	(+)
Finita	1	70.7	69.4	12.3	48	66	67.5	88.5	1.9	5.1	4.8	5.3	(+)
	2	82.4	81.4	12.5	51	68	73.3	89.4	1.2	4.6	4.6	6.2	+
	MW	76.5	75.4	12.4	50	67	70.4	88.9	1.6	4.8	4.7	5.8	(+)
Antalya	1	69.7	68.9	13.4	51	71	51.2	82.4	1.2	4.8	4.0	5.1	(+)
	2	75.2	74.3	13.5	52	71	54.4	80.1	1.2	4.6	4.1	5.4	(+)
	MW	72.5	71.6	13.4	52	71	52.8	81.2	1.2	4.7	4.1	5.2	(+)
Spectrum	1	68.9	68.0	12.3	49	69	59.9	86.2	1.4	5.1	4.2	5.3	(+)
	2	77.6	76.7	12.6	52	70	67.1	84.6	1.4	4.4	4.3	6.2	+
	MW	73.2	72.3	12.5	51	70	63.5	85.4	1.4	4.8	4.3	5.7	(+)
Dyveke	1	68.0	67.2	13.4	52	70	60.4	82.5	1.2	4.9	4.0	5.7	(+)
	2	77.9	77.3	13.0	55	71	65.0	81.4	0.8	4.5	3.8	6.3	+
	MW	72.9	72.3	13.2	54	71	62.7	82.0	1.0	4.7	3.9	6.0	(+)

9.2 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2003-2005, faktoriell - Fortsetzung

Sorte	Stufe	Korn- ertrag	Marktw	Roh- prot.	TKG	hl-Ge- wicht	So	rtierung ir	n %	Kornaus- bildung	Spelzen- feinheit	-	
		dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Jorinde	1	69.5	67.3	12.5	45	69	46.5	83.0	3.2	5.6	4.8	3.8	(-)
	2	79.9	78.4	12.7	48	69	52.3	87.1	2.0	5.6	5.2	4.0	(-)
	MW	74.7	72.8	12.6	46	69	49.4	85.1	2.6	5.6	5.0	3.9	(-)
Campanile	1	72.0	68.8	11.6	47	70	39.5	78.2	4.5	5.8	4.3	3.7	(-)
	2	84.7	82.4	11.6	49	72	47.1	83.8	2.8	5.8	4.5	4.2	0
	MW	78.3	75.6	11.6	48	71	43.3	81.0	3.6	5.8	4.4	3.9	(-)
Escape	1	65.8	64.5	13.0	48	70	45.2	82.2	2.1	5.2	4.4	4.3	0
	2	76.2	75.1	12.6	51	72	50.8	85.9	1.5	4.7	4.4	5.0	0
	MW	71.0	69.8	12.8	50	71	48.0	84.1	1.8	5.0	4.4	4.6	0
Queen	1	68.7	68.0	13.3	57	68	67.8	89.4	1.1	4.6	5.5	5.4	(+)
	2	78.9	78.3	13.4	58	70	72.9	90.6	0.9	4.3	5.5	5.9	(+)
	MW	73.8	73.1	13.3	58	69	70.3	90.0	1.0	4.5	5.5	5.6	(+)
1 = ohne		69.2	67.9	12.5	50	70	57.8	86.5	2.0	4.8	4.1	5.4	(+)
2 = mit WR- u.Fun	gizideins.	78.4	77.3	12.9	53	71	63.2	88.3	1.5	4.5	4.1	6.0	(+)
Mittel		73.8	72.6	12.7	52	70	60.5	87.4	1.8	4.7	4.1	5.7	(+)

Quelle: LfL, IPZ 2, Sort. 153 2003-2005, mit jeweils 2 Behandlungsstufen

9.3 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2005

Sorte	Anz.	Korn-	Marktw	Roh-	TKG	hl-Gewicht	So	rtierung ir	1 %	Kornaus-	Spelzen-	-	ualitäts-
	Orte	ertrag dt/ha	ertrag dt/ha	prot. %	g	kg	>2,8mm	>2,5mm	<2,2mm	bildung 1-9	feinheit 1-9	ind korr.	dex Symbol
Duet	10	73.9	72.6	12.6	49.8	73.2	55.9	88.8	1.9	4.5	2.6	6.5	+
Tiffany	10	73.6	71.9	12.1	49.2	71.5	57.3	86.2	2.4	4.8	3.2	6.0	(+)
Camera	10	74.2	73.5	12.5	50.0	69.6	67.4	92.0	0.9	4.7	4.8	5.7	+
Tafeno	10	73.4	72.7	12.6	51.8	71.6	74.9	94.0	1.0	3.6	3.2	7.8	++
Reni	10	76.8	76.4	12.5	60.6	71.9	80.2	95.8	0.6	4.0	2.9	8.1	+++
Carrero	10	78.2	77.7	12.7	55.5	70.1	81.0	96.0	0.6	4.3	3.9	7.3	++
Passion	10	76.7	74.6	12.5	47.3	69.8	48.4	82.2	2.8	5.6	4.4	4.3	0
Carat	10	75.8	75.1	12.3	47.0	72.3	75.1	93.1	1.0	2.6	2.4	8.8	+++
Verticale	10	77.4	76.8	12.8	58.2	70.5	80.1	96.0	0.8	4.3	4.1	7.2	++
Advance	10	77.1	74.7	12.2	47.0	70.1	48.0	83.2	3.2	5.5	3.8	4.6	0
Mombasa	10	75.7	75.2	12.7	53.7	71.0	87.2	96.8	0.6	3.1	2.8	9.0	+++
Gerval	10	75.5	74.9	12.8	59.6	71.1	54.7	83.8	0.8	4.5	4.3	5.4	(+)
Finita	10	78.6	77.6	12.1	49.9	67.9	68.6	85.8	1.4	4.6	4.3	6.0	(+)
Antalya	10	75.9	75.2	13.1	52.4	71.9	51.6	75.4	0.9	4.5	3.7	5.6	(+)
Spectrum	10	77.3	76.7	12.1	51.9	70.6	66.0	83.0	0.9	4.4	3.9	6.3	+
Dyveke	10	75.1	74.6	13.0	54.1	71.7	66.1	82.0	0.7	4.5	3.6	6.5	+
Jorinde	10	76.4	74.8	12.2	46.9	70.0	47.5	83.0	2.2	5.5	4.4	4.3	0
Campanile	10	78.9	76.1	11.5	48.3	71.6	43.8	79.0	3.7	5.7	4.4	4.0	(-)
Escape	10	73.2	72.1	12.6	50.3	71.7	51.4	84.1	1.5	4.8	4.1	5.2	(+)
Queen	10	75.4	75.0	12.9	57.7	69.4	71.8	88.3	0.6	4.2	5.7	5.8	(+)
Mittel Hauptsortin	nent	76.0	74.9	12.5	52.0	70.9	63.8	87.4	1.4	4.5	3.8	6.2	+

Quelle: LfL, IPZ 2, Sort. 153 2005, Mittel aus 10 Orten (WP = 5 Orte), Berechnung mit LSMEANS

9.3 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2005 - Fortsetzung

Sorte	Anz.	Korn-	Marktw	Roh-	TKG	hl-	So	rtierung ir	າ %	Kornaus-	Spelzen-	Kornqı	ualitäts-
	Orte	ertrag	ertrag	prot.		Gewicht				bildung	feinheit	index	(KQI)
		dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Wertprüfung													
Vanessa	5	75.5	74.9	12.7	55.3	71.6	70.7	81.3	0.8	3.6	2.7	7.8	++
Franziska	5	82.1	81.2	11.4	46.0	69.5	58.1	82.8	1.1	5.5	5.3	4.4	0
Merlot	5	81.4	80.3	11.8	45.9	69.8	65.0	85.6	1.4	4.7	6.1	4.9	0
Emily	5	77.7	76.7	12.2	49.8	71.0	61.1	82.8	1.4	5.2	4.2	5.5	(+)
ECK 02370	5	78.6	77.0	12.3	48.1	70.6	50.7	82.8	2.2	5.1	4.3	4.8	0
Finesse	5	79.8	78.9	12.3	51.6	70.5	50.6	83.1	1.2	4.9	3.5	5.3	(+)
Malwinta	5	74.8	73.8	12.3	48.8	70.8	50.5	75.4	1.3	4.1	3.0	6.0	(+)
Cantare	5	77.8	77.0	12.3	50.2	71.3	41.7	70.9	1.0	4.2	3.5	5.1	(+)
LINI 02400	5	70.8	70.2	13.3	49.6	70.8	50.7	65.2	0.9	3.1	2.5	6.8	+
Gesamtmittel		76.5	75.5	12.4	51.0	71.0	61.2	84.8	1.4	4.5	3.8	6.2	+

Quelle: LfL, IPZ 2, Sort. 153 2005, Mittel aus 10 Orten (WP = 5 Orte), Berechnung mit LSMEANS

9.4 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2005 – Orte, faktoriell

Ort	Stufe	Korn- ertrag	Marktw	Roh- prot.	TKG	hl- Gewicht	So	rtierung ir	ı %	Kornaus- bildung	Spelzen- feinheit	Kornqualitäts- index	
		dt/ha	dt/ha	%	g	kg	>2,8mm	>2,5mm	<2,2mm	1-9	1-9	korr.	Symbol
Arnstein	1	76.8	76.0	12.7	52.5	72.5	66.4	91.2	1.2	4.3	3.5	6.7	+
	2	85.7	84.8	12.2	53.8	72.8	70.5	93.0	1.1	4.1	3.5	7.1	++
	MW	81.3	80.4	12.5	53.1	72.6	68.4	92.1	1.1	4.2	3.5	6.9	+
Embach	1	73.3	71.5	13.2	48.9	69.3	52.5	78.8	2.4	4.4	3.9	5.4	(+)
	2	83.2	82.7	12.4	54.0	71.5	69.0	83.8	0.6	3.9	3.7	7.0	+
	MW	78.2	77.1	12.8	51.5	70.4	60.8	81.3	1.5	4.2	3.8	6.2	+
Feistenaich	1	68.0	67.1	12.9	51.3	69.8	72.1	92.9	1.3	4.5	3.9	6.6	+
	2	76.6	75.9	12.8	54.1	71.2	81.2	95.6	0.9	3.8	3.8	7.7	++
	MW	72.3	71.5	12.8	52.7	70.5	76.6	94.2	1.1	4.2	3.8	7.2	++
Günzburg	1	67.1	66.1	12.6	47.6	70.4	52.9	86.5	1.5	5.0	3.8	5.2	(+)
	2	81.5	81.0	13.0	54.0	72.2	73.0	95.1	0.6	4.2	4.3	6.8	+
	MW	74.3	73.5	12.8	50.8	71.3	62.9	90.8	1.0	4.6	4.0	6.0	(+)
Hausen	1	71.1	68.1	12.4	43.8	66.2	43.4	78.2	4.4	5.3	4.5	3.8	(-)
	2	86.1	84.7	12.0	49.6	68.7	64.8	90.4	1.6	4.7	4.4	5.7	(+)
	MW	78.6	76.4	12.2	46.7	67.5	54.1	84.3	3.0	5.0	4.4	4.8	0
Landsberg	1	73.5	72.9	10.8	54.1	70.6	68.7	93.5	0.7	4.5	4.7	6.0	(+)
	2	79.0	78.1	10.5	53.8	70.7	69.4	93.7	1.1	4.3	4.7	6.2	+
	MW	76.2	75.5	10.7	54.0	70.7	69.0	93.6	0.9	4.4	4.7	6.1	+
Rudolzhofen	1	69.9	68.5	13.9	51.7	72.3	44.2	72.1	2.1	4.7	3.1	5.3	(+)
	2	76.7	75.7	13.8	53.5	73.2	46.4	70.6	1.4	4.4	3.1	5.7	(+)
	MW	73.3	72.1	13.8	52.6	72.8	45.3	71.4	1.7	4.5	3.1	5.5	(+)
Schmidhausen	1	66.8	64.8	14.3	46.4	67.9	39.3	75.5	3.1	5.5	4.8	3.4	(-)
	2	86.4	85.5	13.2	53.9	70.0	52.4	79.5	1.1	4.7	4.9	4.7	Ö
	MW	76.6	75.1	13.7	50.2	68.9	45.8	77.5	2.1	5.1	4.9	4.0	(-)

Quelle: LfL, IPZ 2, Sort. 153 2005, Mittel aus 20 Sorten mit jeweils 2 Behandlungsstufen

9.4 Ertragsleistung und Kornqualität der 2-zeiligen Wintergerste 2005 – Orte, faktoriell - Fortsetzung

Ort	Stufe						ı %	Kornaus-	•	•	ualitäts-		
		ertrag dt/ha	ertrag dt/ha	prot. %	g	Gewicht kg	>2,8mm	>2,5mm	<2,2mm	bildung 1-9	feinheit 1-9	ind korr.	dex Symbol
Seligenstadt	1	77.5	77.0	11.6	57	72	83.9	96.3	0.7	4.3	2.7	8.3	+++
	2	84.8	84.1	11.5	56	73	82.3	95.6	0.8	4.4	2.9	8.0	++
	MW	81.2	80.5	11.5	57	72	83.1	95.9	0.8	4.3	2.8	8.2	+++
Wolfsdorf	1	64.1	63.4	12.3	51	71	67.2	91.8	1.1	4.5	3.1	6.8	+
	2	71.1	70.5	12.1	53	72	76.6	94.6	0.8	4.1	3.0	7.8	++
	MW	67.6	66.9	12.2	52	72	71.9	93.2	1.0	4.3	3.0	7.3	++
1 = ohne		70.8	69.5	12.7	50	70	59.0	85.6	1.8	4.7	3.8	5.8	(+)
2 = mit WR- u.Fung.e	einsatz	81.1	80.3	12.3	54	72	68.6	89.2	1.0	4.2	3.8	6.7	+
Mittel		76.0	74.9	12.5	52	71	63.8	87.4	1.4	4.5	3.8	6.2	+

Quelle: LfL, IPZ 2, Sort. 153 2005, Mittel aus 20 Sorten mit jeweils 2 Behandlungsstufen

9.5 Malzqualität der 2-zeiligen Wintergerste 2005

	Anz.	Roh-	lösl.N	ELG	VZ 45°C	Visko-	Bra-	Friabili-	Extrakt	Endver-	Farbe	Malzqu	ualitäts-
Sorte	Orte	protein	mg/100g			sität	bender	meter		gärung	EBC	ind	dex
		%	MTS	%	%	mPa*s	Nm	%	%	%		korr.	Symbol
Tiffany	6	10.9	736	42.3	38.1	1.61	127	72.0	81.1	84.0	3.3	6.2	+
Carrero	6	11.5	683	37.4	37.4	1.64	137	59.1	80.6	84.0	2.7	5.2	(+)
Mombasa	6	11.4	783	43.1	40.5	1.66	121	71.1	82.1	84.2	3.1	6.9	+
Wertprüfung													
Vanessa	2	11.6	787	42.7	40.8	1.63	120	69.7	82.1	84.3	3.2	6.9	+
Malwinta	2	11.2	721	40.3	37.6	1.61	120	73.5	80.2	83.6	2.6	5.7	(+)
Cantare	2	12.0	838	43.7	36.0	1.58	119	67.6	80.5	83.8	4.2	5.4	(+)
Mittel		11.4	758	41.6	38.4	1.62	124	68.8	81.1	84.0	3.2	6.0	(+)
	Anz.												
Orte	Sorten												
Embach	6	12.2	756	38.8	39.3	1.61	130	59.7	81.2	83.7	3.3	5.6	(+)
Feistenaich	6	11.6	814	43.7	46.4	1.58	123	66.0	82.4	84.1	3.6	7.3	++
Hausen	3	11.1	782	44.0	36.7	1.67	132	71.9	81.1	83.7	3.0	6.0	(+)
Landsberg	3	10.1	711	44.0	32.8	1.68	120	78.6	81.2	82.9	3.7	5.9	(+)
Seligenstadt	6	11.4	721	39.5	37.1	1.63	123	67.1	80.5	84.8	2.8	5.7	(+)
Wolfsdorf	6	11.7	714	38.1	38.5	1.58	124	66.8	80.6	85.0	2.5	5.9	(+)
Mittel		11.5	750	40.8	39.2	1.62	125	67.0	81.2	84.2	3.1	6.1	+

Quelle: LfL, IPZ 2, Sort. 153 2005, Mittel aus 6 Sorten bzw 6 Orten, LSMEANS

10 Einfluss der Gelbmosaikvirusresistenz auf den Kornertrag und Kornqualität Wintergerste 2005

10.1 Einfluss der Gelbmosaikvirusresistenz 2005 in Bad Windsheim

	Zeilig-	Virus	Korn-	Markt-	TKG	hl-	S	Sortierung ^c	%	Korn-	Spelz.
Sorten	keit	res.	ertrag	ertrag		Gewicht	>2,8	>2,5	2,2 -	ausb.	feinh.
			dt/ha	dt/ha	g	kg	mm	mm	2,5mm	1-9	1-9
Duet	2	r	57.6	53.5	43.1	72.5	16.9	61.9	30.9	6.0	5.0
Tafeno	2	r	57.8	54.9	43.0	71.0	37.8	73.5	21.5	7.0	6.0
Reni	2	а	44.8	40.8	43.9	69.2	31.8	67.0	24.1	7.0	6.0
Passion	2	r	62.2	50.7	38.1	68.5	15.8	46.5	35.1	7.0	6.0
Carat	2	r	66.7	64.4	40.2	71.4	42.6	78.8	17.7	6.0	4.0
Verticale	2	r	58.6	57.1	50.0	71.2	40.9	80.8	16.6	7.0	5.0
Advance	2	r	61.3	52.2	38.5	69.1	37.9	53.1	32.0	8.0	6.0
Finita	2	r	61.9	59.4	44.7	68.7	32.1	80.7	15.2	7.0	6.0
Campanile	2	r	58.0	47.5	39.7	70.0	35.3	51.2	30.7	8.0	6.0
Jorinde	2	rr	59.0	52.2	40.9	69.8	41.4	56.9	31.6	8.0	6.0
Kyoto	2	rr	57.6	47.2	37.3	69.3	31.7	46.3	35.6	8.0	6.0
Mittel a		dt/ha	44.8	40.8	43.9	69.2	31.8	67.0	24.1	7.0	6.0
Mittel r, rr		dt/ha	60.1	53.9	41.6	70.2	33.2	63.0	26.7	7.2	5.6
Ludmilla	6	t	53.9	49.3	41.8	68.8	36.4	62.9	28.5	8.0	7.0
Lomerit	6	r	68.5	64.1	42.5	71.1	38.8	70.4	23.2	8.0	7.0
Merlot	6	r	60.9	53.4	36.6	68.9	34.9	55.6	32.0	8.0	7.0
Naomie	6	r	63.2	59.7	40.4	66.7	41.2	63.8	30.6	8.0	8.0
Anastasia	6	rr	62.7	55.1	35.6	68.8	35.2	49.5	38.3	7.0	7.0
Elbany	6	r	59.6	50.0	33.5	68.5	9.2	40.4	43.5	8.0	7.0
Maximiliane	6	r	63.2	60.6	42.3	70.4	38.6	75.4	20.4	8.0	8.0
Cinderella	6	r	62.2	55.0	37.6	67.1	18.4	52.5	36.0	9.0	8.0
Mittel a		dt/ha	53.9	49.3	41.8	68.8	36.4	62.9	28.5	8.0	7.0
Mittel r, rr		dt/ha	62.9	56.8	38.4	68.8	30.9	58.2	32.0	8.0	7.4

Quelle: IPZ 2, Sort. 167 Bad Windsheim

10.2 Einfluss der Gelbmosaikvirusresistenz 2005 in Oberhaunstadt

	Zeilig-	Virus	Korn-	Markt-	TKG	hl-	S	ortierung ^c	%	Korn-	Spelz.
Sorten	keit	res.	ertrag	ertrag		Gewicht	>2,8	>2,5	2,2 -	ausb.	feinh.
			dt/ha	dt/ha	g	kg	mm	mm	2,5mm	1-9	1-9
Duet	2	r	74.6	74.2	55.0	75.0	81.4	96.4	3.0	5.0	4.0
Tafeno	2	r	74.0	73.3	55.0	71.9	83.1	95.0	4.1	6.0	5.0
Reni	2	а	67.3	66.6	63.0	70.6	77.0	94.6	4.4	6.0	6.0
Passion	2	r	88.4	87.7	53.9	72.3	77.1	95.1	4.1	6.0	5.0
Carat	2	r	80.5	79.6	50.0	72.3	85.1	94.8	4.1	4.0	4.0
Verticale	2	r	69.5	69.3	61.2	71.0	84.9	96.8	2.8	6.0	5.0
Advance	2	r	85.1	84.3	53.5	72.1	71.2	93.0	6.1	6.0	4.0
Finita	2	r	85.8	85.3	58.0	70.8	90.3	97.2	2.3	6.0	5.0
Campanile	2	r	80.8	78.3	51.7	71.7	61.4	84.3	12.6	7.0	5.0
Jorinde	2	rr	78.6	77.9	49.0	70.8	68.7	92.0	7.1	7.0	7.0
Mittel a		dt/ha	67.3	66.6	63.0	70.6	77.0	94.6	4.4	6.0	6.0
Mittel r, rr		dt/ha	79.7	78.9	54.1	72.0	78.1	93.8	5.1	5.9	4.9
Ludmilla	6	t	79.0	78.6	53.5	71.2	87.3	96.6	2.9	6.0	7.0
Lomerit	6	r	85.5	84.8	51.5	71.2	84.0	96.8	2.4	7.0	7.0
Merlot	6	r	80.4	78.8	46.4	69.2	75.2	91.7	6.3	6.0	8.0
Naomie	6	r	79.9	79.6	53.6	68.8	82.7	96.1	3.6	7.0	8.0
Anastasia	6	rr	82.3	81.6	44.6	70.3	69.7	93.6	5.6	6.0	7.0
Elbany	6	r	92.2	90.9	43.2	71.4	69.1	91.4	7.2	6.0	7.0
Maximiliane	6	r	77.8	77.4	49.8	70.0	87.6	97.9	1.5	7.0	8.0
Cinderella	6	r	79.3	79.0	45.3	67.2	82.1	96.1	3.5	8.0	8.0
Mittel a		dt/ha	79.0	78.6	53.5	71.2	87.3	96.6	2.9	6.0	7.0
Mittel r, rr		dt/ha	82.5	81.7	47.8	69.7	78.6	94.8	4.3	6.7	7.6

Quelle: IPZ 2, Sort. 167 Oberhaunstadt

10.3 Einfluss der Gelbmosaikvirusresistenz 2005 in Rüdisbronn

	Zeilig-	Virus	Korn-	Markt-	TKG	hl-	S	ortierung '	%	Korn-	Spelz.
Sorten	keit	res.	ertrag	ertrag		Gewicht	>2,8	>2,5	2,2 -	ausb.	feinh.
			dt/ha	dt/ha	g	kg	mm	mm	2,5mm	1-9	1-9
Duet	2	r	25.6	22.8	42.2	69.8	15.1	55.1	33.9	7.0	6.0
Tafeno	2	r	28.9	26.2	42.7	68.3	28.3	65.0	25.9	7.0	6.0
Reni	2	а	30.9	29.0	50.6	69.1	38.9	73.0	20.9	6.0	6.0
Passion	2	r	28.8	23.8	38.0	66.4	15.8	48.6	33.9	7.0	5.0
Carat	2	r	35.5	33.3	40.3	70.6	35.5	72.3	21.3	5.0	4.0
Verticale	2	r	27.2	25.5	46.5	67.8	24.6	68.2	25.6	7.0	6.0
Advance	2	r	35.5	30.1	39.3	67.9	17.4	53.6	31.2	7.0	5.0
Finita	2	r	29.5	27.4	42.4	67.1	40.1	71.8	21.0	7.0	6.0
Campanile	2	r	29.9	23.6	38.8	68.1	11.0	46.3	32.7	7.0	6.0
Jorinde	2	rr	51.3	49.1	44.2	70.8	27.3	75.6	20.0	6.0	6.0
Kyoto	2	rr	55.7	50.0	42.1	70.8	27.5	64.4	25.4	6.0	5.0
Mittel a		dt/ha	30.9	29.0	50.6	69.1	38.9	73.0	20.9	6.0	6.0
Mittel r, rr		dt/ha	34.8	31.2	41.7	68.8	24.3	62.1	27.1	6.6	5.5
Ludmilla	6	t	50.5	48.4	45.4	69.9	41.7	78.3	17.6	7.0	7.0
Lomerit	6	r	32.2	28.1	40.7	69.1	23.4	58.3	29.1	8.0	7.0
Merlot	6	r	34.7	31.2	37.9	67.8	27.3	61.3	28.5	8.0	7.0
Naomie	6	r	34.8	32.0	38.6	64.3	19.2	56.3	35.7	8.0	8.0
Anastasia	6	rr	53.3	50.0	40.3	69.1	28.0	72.1	21.7	7.0	7.0
Elbany	6	r	35.9	31.4	36.8	68.5	19.4	54.0	33.4	8.0	7.0
Maximiliane	6	r	36.8	33.8	41.8	68.4	32.2	68.2	23.7	8.0	8.0
Cinderella	6	r	39.6	34.2	38.1	65.1	19.9	54.6	31.8	9.0	8.0
Mittel a		dt/ha	50.5	48.4	45.4	69.9	41.7	78.3	17.6	7.0	7.0
Mittel r, rr		dt/ha	38.2	34.4	39.2	67.5	24.2	60.7	29.1	8.0	7.4

Quelle: IPZ 2, Sort. 167 Rüdisbronn