

Versuchsergebnisse aus Bayern 2018

Faktorieller Sortenversuch WINTERWEIZEN Kornphysikalische Untersuchungen

Ergebnisse aus Versuchen in Zusammenarbeit mit den Landwirtschaftsämtern

Herausgeber: Bayerische Landesanstalt für Landwirtschaft Institut für Pflanzenbau und Pflanzenzüchtung

Am Gereuth 8, 85354 Freising

Autoren: U. Nickl, A. Wiesinger, L. Huber

Kontakt: Tel: 08161/71-3628, Fax: 08161/71-4085 Email: ulrike.nickl@LfL.bayern.de

Versuch 102: Faktorieller Sortenversuch zur Beurteilung der Resistenz, Anbaueigenschaften, Qualität und Ertrag

Inhaltsverzeichnis

Geprüfte Sorten	. 3
Versuchsbeschreibung	. 7
Kornphysikalische Untersuchungen, Sorten, 2018	. 8
Kornphysikalische Untersuchungen, Orte und Behandlungen, 2018	11
Kornphysikalische Untersuchungen, Sorten, mehrjährig	14
Kornphysikalische Untersuchungen, Sorten und Behandlungen, dreijährig	16

Geprüfte Sorten

Kenn-	Sortenname	Qualität	zugelassen	Saatgut-Verm.	Züchter / Vertrieb
Nr.			seit	Fläche in ha	
BSA				Bayern 2018	
LSV Hau	ptsortiment				
4586	Axioma	E	2014	172	SECOBRA Saatzucht GmbH, Moosburg
5149	Beryll	E	2017		Syngenta Seeds
5214	Expo	Е	2018		Deutsche Saatveredelung AG, Lippstadt
3086	Kerubino EU	(E)	2004	105	Karl Schmidt, Landau / IG-Pflanzenzucht
5253	KWS Emerick	E	2018	23	KWS Lochow GmbH, Bergen
4923	Moschus	E	2016	66	Strube, Söllingen / IG-Pflanzenzucht
4736	Ponticus	Е	2015	92	Strube, Söllingen / R.A.G.T
5287	Asory	Α	2018	24	SECOBRA Saatzucht GmbH, Moosburg
4909	Apostel	Α	2016	442	Saatzucht Streng GmbH & Co.KG, Uffenheim / IG-Pflanzenzucht
5293	Chaplin	Α	2018	3	SECOBRA Saatzucht GmbH, Moosburg / Deutsche Saatveredelung AG, Lippstadt
5161	Chiron	Α	2017	163	NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt / Saaten-Union
3580	Julius VGL	Α	2008	38	KWS Lochow GmbH, Bergen
5332	LG Initial	Α	2018	41	Limagrain GmbH, Edemissen
4967	Nordkap VRS	Α	2016	4	NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt / Saaten-Union
4206	Patras	Α	2012	348	Deutsche Saatveredelung AG, Lippstadt / IG-Pflanzenzucht
5079	RGT Aktion	Α	2017	21	Firma R2n S.A.S., Rodez Cedex, Frankreich / R.A.G.T
4560	RGT Reform VRS	Α	2014	605	Firma R2n S.A.S., Rodez Cedex, Frankreich / R.A.G.T
4585	Spontan	Α	2014	323	SECOBRA Saatzucht GmbH, Moosburg / Limagrain

VGL = Vergleichssorte, VRS = Verrechnungssorte

Geprüfte Sorten - Fortsetzung

Kenn-	Sortenname	Qualität	zugelassen	Saatgut-Verm.	Züchter / Vertrieb
Nr. BSA			seit	Fläche in ha Bayern 2018	
	uptsortiment			,	
5267	Argument	В	2018	38	Saatzucht Streng GmbH & Co.KG, Uffenheim / IG-Pflanzenzucht
5064	Boss	В	2017	92	SECOBRA Saatzucht GmbH, Moosburg / Deutsche Saatveredelung AG, Lippstadt
4734	Faustus	В	2015	119	Strube, Söllingen / Saaten-Union
5357	Hymalaya ^H	В	2018		NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt / Saaten-Union
5246	Informer	В	2018	23	Saatzucht Breun Josef GdbR, Herzogenaurach / Limagrain GmbH, Edemissen
5063	Kamerad VGL	В	2017	39	SECOBRA Saatzucht GmbH, Moosburg / Hauptsaaten für die Rheinprovinz, Köln
5088	KWS Talent	В	2017	15	KWS Lochow GmbH, Bergen
5084	RGT Sacramento*	В	2017	28	Firma R2n S.A.S., Rodez Cedex, Frankreich / R.A.G.T
4257	Elixer VRS	С	2012	483	W. von Borries-Eckendorf GmbH & Co., Leopoldshöhe / Saaten-Union
Sorten n	nit regionaler Bedeutu	ıng			
3161	Impression	Α	2005	87	Saatzucht Schweiger GbR, Moosburg / IG-Pflanzenzucht
4057	Kometus	Α	2011	84	Saatzucht Schweiger GbR, Moosburg / SECOBRA
5351	Lemmy	Α	2018	10	NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt / Saaten-Union
3959	Meister	Α	2010	91	Firma R2n S.A.S., Rodez Cedex, Frankreich / R.A.G.T
4875	Sheriff	С	2016	119	InterSaatzucht GmbH, Hohenkammer / SECOBRA

VGL = Vergleichssorte, VRS = Verrechnungssorte,

^{*}Grannenweizen

^H Hybridweizen

Geprüfte Sorten/Stämme - Fortsetzung

Kenn-	Sortenname	Qualität	zugelassen	Saatgut-Verm.	Züchter / Vertrieb
Nr.			seit	Fläche in ha	
BSA				Bayern 2018	
Wertprüt	fung				
3953	Genius VGL	Е	2010	32	NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt / Saaten-Union
4919	Porthus VGL	В	2016	9	Strube, Söllingen / Saaten-Union
5404	NORD 05404				NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt
5407	NORD 05407				NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt
5414	LIPP 05414				Deutsche Saatveredelung AG, Lippstadt
5416	LIPP 05416				Deutsche Saatveredelung AG, Lippstadt
5421	LIPP 05421				Deutsche Saatveredelung AG, Lippstadt
5433	LMGN 05433				Limagrain GmbH, Edemissen
5434	LMGN 05434				Limagrain GmbH, Edemissen
5439	LMGN 05439				Limagrain GmbH, Edemissen
5442	LMGN 05442				Limagrain GmbH, Edemissen
5458	R2N 05458				Firma R2n S.A.S., Rodez Cedex, Frankreich
5463	R2N 05463				Firma R2n S.A.S., Rodez Cedex, Frankreich
5467	NORD 05467 ^H				NORDSAAT Saatzuchtgesellschaft mbH, Halberstadt
5470	SECO 05470				SECOBRA Saatzucht GmbH, Moosburg
5471	SECO 05471				SECOBRA Saatzucht GmbH, Moosburg
5491	DNKO 05491				DANKO, Polen
5498	IGST 05498				I. G. Saatzucht GmbH, Gülzow-Prüzen
5501	IGST 05501				I. G. Saatzucht GmbH, Gülzow-Prüzen
5518	SIST 05518				S. I. Strube, Söllingen
5519	SIST 05519				S. I. Strube, Söllingen

VGL = Vergleichssorte, ^H Hybridweizen

Erläuterungen zu den kornphysikalischen Untersuchungen

Sortierung

Zur Ermittlung der Sortierung werden 100g Körner mit dem Sortimat der Firma Pfeuffer mit den Schlitzgrößen 2,5 mm, 2,2 mm und 2,0 mm 5 Minuten geschüttelt und anschließend die verschiedenen Fraktionen gewogen.

Tausendkorngewicht (TKG in g)

Bei der Bestimmung des TKG werden mit dem Körnerzähler Contador der Firma Pfeuffer 2 x 1000 Körner gezählt, gewogen und der Mittelwert gerechnet.

Hektolitergewicht (hl) in kg

Das Hektolitergewicht wurde mit der Apparatur und nach den Bestimmungen der Physikalisch-Technischen Bundesanstalt ermittelt. Dabei wird bei gleicher Einschütthöhe ein Vorratszylinder (von 0,25 l) gefüllt. Das Schwert, das den Zylinder in halber Höhe teilt, wird nach der Befüllung herausgezogen, so dass der Weizen mit stets gleicher Fallgeschwindigkeit in den Messbereich des Zylinders fällt. Das Messvolumen wird mit dem eingeschobenen Schwert begrenzt. Die Wägung des im Messzylinder enthaltenen Korngutes liefert nach einer tabellarischen Umrechnung dann das hl-Gewicht in kg.

Bewertung	hl-Gewicht in kg
gut	über 80
mittel	75-79
gering	70-74

Kornausbildung

Die Ausbildung des Kornes wird mit Noten von 1 – 9 bonitiert. Dabei wird mit der Note 1 ein volles rundliches Korn mit geschlossener Bauchfurche und mit 9 ein flaches Abputzkorn charakterisiert.

Sortenmittelwerte

Um die Vergleichbarkeit der Sortenmittelwerte über Orte und Jahre zu gewährleisten, werden die Werte mit der SAS-Prozedur GLM/LSMEANS errechnet. Damit sind alle Sorten unabhängig von ihrer Prüfdauer und der Anzahl der Versuche, untereinander vergleichbar.

Dabei können die Ergebnisse von dreijährig geprüften Sorten als endgültig gesichert angesehen werden. Bei zwei Prüfjahren wird das Ergebnis als vorläufig bezeichnet. Als "Trend" ist das auf drei Jahre hochgerechnete Ergebnis zu betrachten, wenn nur aus einem Prüfjahr Daten vorliegen.

Versuchsbeschreibung

Versuchsanlage: Spaltanlage, 2 Faktoren, 3 Wiederholungen;

12 Orte, davon 5 mit Wertprüfung

Faktoren: 1. Sorten: Hauptsortiment 27 Sorten

Wertprüfung 21 Sorten bzw. Stämme

Sorten mit regionaler Bedeutung 5 Sorten

(detaillierte Auflistung in Tabelle "Geprüfte Sorten/Stämme")

2. Intensität: N-Düngung, Wachstumsregulator, Fungizide

Beschreibung der Stufen (Behandlungen):

	N-Düngung	Wachstumsregulator	Fungizide
Beh. 1	ortsüblich optimal	ohne/reduziert	ohne
Beh. 2	ortsüblich optimal	mit	nach Bedarf

Düngung in allen Stufen einheitlich

Die detaillierte Beschreibung der pflanzenbaulichen Maßnahmen ist im Bericht "Faktorieller Sort enversuch Winterweizen Ernte 2018" dokumentiert.

Kornphysikalische Untersuchungen, Sorten, 2018

Sorte	Anzahl	Quali-	Korn-	hl-	TKG		SOR	ΓIERUNG	in %		Korn-
	Orte	tät	ertrag dt/ha	Gewicht kg	g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
LSV Hauptsortiment											
Axioma	12	Е	79,6	82,5	44,0	87,2	10,0	1,6	1,2	97,2	5,9
Beryll	12	Е	86,4	82,8	44,8	82,1	14,4	1,7	1,9	96,4	6,0
Expo	12	Е	79,8	82,0	44,9	85,1	11,1	1,5	2,3	96,3	5,8
Kerubino EU	12	(E)	84,8	82,6	45,0	83,9	12,4	1,8	1,9	96,3	6,0
KWS Emerick	12	Е	85,8	82,7	46,6	83,6	11,9	2,3	2,1	95,6	5,8
Moschus	12	Е	82,6	83,5	44,8	90,3	6,9	1,0	1,8	97,3	5,8
Ponticus	12	E	81,4	82,3	42,5	86,2	10,2	1,4	2,2	96,4	6,4
Apostel	12	Α	87,0	82,0	44,7	87,0	7,5	2,5	3,0	94,5	6,1
Asory	12	Α	91,4	82,5	44,0	70,7	22,2	4,3	2,8	92,9	6,2
Chaplin	12	Α	86,2	81,7	45,8	80,3	16,2	2,0	1,6	96,5	6,3
Chiron	12	Α	82,7	83,7	43,4	82,8	13,4	1,9	2,0	96,1	6,0
Julius	12	Α	80,9	82,9	44,0	78,4	17,5	2,4	1,7	96,0	5,7
LG Initial	12	Α	84,8	79,9	40,1	68,7	24,6	3,7	3,0	93,3	6,6
Nordkap	12	Α	85,6	81,4	44,8	80,8	15,1	2,2	1,9	95,9	5,6
Patras	12	Α	83,4	80,7	48,4	85,4	10,9	1,9	1,8	96,3	5,3
RGT Aktion	12	Α	84,5	81,6	41,9	80,4	13,4	2,8	3,4	93,8	6,2
RGT Reform	12	Α	86,5	82,1	42,9	76,5	18,4	3,0	2,1	94,9	6,2
Spontan	12	Α	82,1	82,6	42,7	82,2	12,7	2,4	2,7	94,8	6,0
Aittel (Hauptsortiment)			85,4	81,9	43,8	80,3	14,8	2,6	2,3	95,1	6,1

Quelle: LfL, IPZ 2a, Sort. 102 / 2018, 2 Behandlungsstufen

Kornphysikalische Untersuchungen, Sorten, 2018 - Fortsetzung

Sorte	Anzahl	Quali-	Korn-	hl-	TKG		SOR	TIERUNG	in %		Korn-
	Orte	tät	ertrag dt/ha	Gewicht kg	g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
LSV Hauptsortiment											
Argument	12	В	89,7	83,2	48,6	86,1	9,1	2,8	2,0	95,3	5,9
Boss	12	В	88,7	82,0	38,7	68,7	24,2	4,6	2,5	92,8	6,5
Faustus	12	В	83,5	80,1	40,2	70,1	22,8	4,2	3,0	92,9	6,6
Hymalaya ^H	12	В	89,7	82,0	43,6	82,7	12,3	2,4	2,6	95,0	6,2
Informer	12	В	91,6	80,0	46,6	76,0	19,2	2,8	2,0	95,2	6,3
Kamerad	12	В	84,0	81,6	40,8	76,2	17,2	2,9	3,7	93,4	6,7
KWS Talent	12	В	89,0	81,8	42,2	79,4	15,4	2,9	2,4	94,8	6,3
RGT Sacramento ¹⁾	12	В	82,5	81,6	45,1	82,8	11,4	3,1	2,7	94,2	5,8
Elixer	12	С	90,9	80,6	41,2	74,1	20,0	3,4	2,5	94,1	5,9
Sorten mit regionaler B	edeutung*										
Impression	7	Α	81,2	81,4	46,7	80,4	12,3	4,1	3,2	92,6	6,0
Kometus	7	Α	78,3	83,3	39,6	71,7	21,4	3,7	3,2	93,1	6,3
Lemmy	5	Α	82,2	79,9	38,2	60,1	27,8	8,0	4,2	87,9	6,5
Meister	7	Α	79,1	80,1	46,3	84,3	10,7	2,3	2,6	95,1	5,9
Sheriff	5	С	88,1	80,1	40,5	72,0	21,5	3,2	3,3	93,5	6,9
Mittel (Hauptsortiment)			85,4	81,9	43,8	80,3	14,8	2,6	2,3	95,1	6,1

^{*}Berechnung mit LSMEANS, nicht im Mittel; Quelle: LfL, IPZ 2a, Sort. 102 / 2018, 2 Behandlungsstufen

^H Hybridweizen

¹⁾Grannenweizen

Kornphysikalische Untersuchungen, Sorten, 2018 - Fortsetzung

Sorte	Anzahl	Quali-	Korn-	hl-	TKG		SORT	TIERUNG I	in %		Korn-
	Orte	tät	ertrag dt/ha	Gewicht kg	g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
Wertprüfung*											
Genius	5	Е	77,5	82,5	41,9	79,7	15,8	2,2	2,3	95,5	5,8
Porthus	5	В	86,8	80,3	41,4	67,9	24,2	5,0	2,9	92,1	6,3
NORD 05404	5		91,9	81,7	43,1	81,6	14,8	2,1	1,5	96,4	6,1
NORD 05407	5		84,8	81,1	38,5	69,5	22,2	4,9	3,3	91,8	6,6
LIPP 05414	5		86,3	81,1	41,2	79,2	14,1	3,7	3,0	93,3	6,1
LIPP 05416	5		85,5	84,1	38,5	65,3	26,0	5,5	3,1	91,4	6,2
LIPP 05421	5		82,6	84,6	39,8	84,7	11,7	1,9	1,7	96,4	6,1
LMGN 05433	5		94,0	81,3	41,1	70,0	22,0	4,6	3,5	92,0	6,4
LMGN 05434	5		90,2	82,3	45,8	82,3	14,0	1,9	1,8	96,3	5,6
LMGN 05439	5		86,9	80,4	43,0	76,7	17,4	2,9	2,9	94,2	6,6
LMGN 05442	5		90,6	81,5	44,9	82,0	12,4	2,7	2,8	94,4	6,0
R2N 05458	5		85,2	82,6	50,0	93,3	3,6	1,3	1,8	96,8	5,5
R2N 05463	5		90,4	82,9	45,6	85,9	9,0	2,1	2,9	95,0	6,1
NORD 05467 ^H	5		91,7	81,5	44,9	81,1	13,4	3,0	2,4	94,6	6,0
SECO 05470	5		93,1	81,6	41,7	69,8	22,4	4,6	3,2	92,2	6,2
SECO 05471	5		84,1	80,7	41,6	70,3	21,9	4,5	3,3	92,3	6,1
DNKO 05491	5		85,8	80,0	45,7	85,9	10,4	2,0	1,8	96,2	6,2
IGST 05498	5		85,9	80,4	44,9	85,5	10,3	1,6	2,6	95,8	6,3
IGST 05501	5		85,8	82,3	48,2	90,4	5,8	1,5	2,3	96,3	5,9
SIST 05518	5		83,5	80,2	41,5	68,2	24,2	4,4	3,2	92,3	6,4
SIST 05519	5		89,1	82,7	45,3	79,0	16,2	2,5	2,3	95,3	6,1
Mittel (Hauptsortimer	littel (Hauptsortiment)			81,9	43,8	80,3	14,8	2,6	2,3	95,1	6,1

^{*}Berechnung mit LSMEANS, nicht im Mittel; Quelle: LfL, IPZ 2a, Sort. 102 / 2018, 2 Behandlungsstufen,

^H Hybridweizen

Kornphysikalische Untersuchungen, Orte und Behandlungen, 2018

Ort	Stufe	Anzahl	Korn-	hl-	TKG		so	RTIERUNG	in %		Korn-
(Mittel nur aus Hauptsortiment)		Sorten	ertrag dt/ha	Gewicht kg	g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
Osterseeon	1	27	82,3	79,7	45,3	87,0	9,1	2,0	1,9	96,0	6,1
	2		88,0	79,9	45,3	85,6	9,2	2,6	2,6	94,8	5,9
	Mittel		85,2	79,8	45,3	86,3	9,1	2,3	2,3	95,4	6,0
Landsberg	1	27	88,0	80,6	43,8	82,2	12,2	2,5	3,1	94,3	6,4
	2		102,0	82,4	48,5	87,3	7,5	2,4	2,7	94,8	6,1
	Mittel		95,0	81,5	46,1	84,8	9,8	2,5	2,9	94,6	6,2
Reith	1	27	80,3	81,1	47,3	89,8	7,3	1,2	1,7	97,0	5,4
	2		90,2	82,5	50,9	93,5	4,0	1,1	1,4	97,5	5,0
	Mittel		85,3	81,8	49,1	91,6	5,6	1,2	1,6	97,3	5,2
Feistenaich	1	27	95,6	84,9	47,1	86,8	7,8	2,2	3,2	94,6	5,4
	2		96,2	84,9	49,6	88,4	5,3	2,6	3,8	93,7	5,2
	Mittel		95,9	84,9	48,3	87,6	6,5	2,4	3,5	94,1	5,3

Kornphysikalische Untersuchungen, Orte und Behandlungen, 2018 - Fortsetzung

Ort	Stufe	Anzahl	Korn-	hl-	TKG		so	RTIERUNG	in %		Korn-
(Mittel nur aus Hauptsortiment)		Sorten	ertrag dt/ha	Gewicht kg	g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
Köfering	1	27	93,0	81,0	40,5	78,3	17,1	2,3	2,3	95,3	6,8
	2		104,7	82,7	46,7	88,5	7,9	1,8	1,8	96,4	6,0
	Mittel		98,9	81,9	43,6	83,4	12,5	2,0	2,1	95,9	6,4
Hartenhof	1	27	70,0	86,1	51,1	90,3	4,4	2,0	3,3	94,7	6,1
	2		75,7	85,2	51,2	89,7	4,6	2,4	3,4	94,2	6,0
	Mittel		72,9	85,7	51,2	90,0	4,5	2,2	3,4	94,5	6,0
Wolfsdorf	1	27	66,4	81,6	35,9	59,4	34,6	4,1	1,9	94,0	6,7
	2		66,9	82,1	36,0	59,8	33,3	4,4	2,5	93,1	6,4
	Mittel		66,6	81,8	35,9	59,6	34,0	4,3	2,2	93,6	6,6
Greimersdorf	1	27	50,9	77,5	33,6	51,4	41,0	5,6	2,0	92,4	6,8
	2		51,0	77,0	33,1	49,2	42,7	5,9	2,1	91,9	6,6
	Mittel		50,9	77,2	33,4	50,3	41,8	5,7	2,1	92,2	6,7

Kornphysikalische Untersuchungen, Orte und Behandlungen, 2018 - Fortsetzung

Ort	Stufe	Anzahl	Korn-	hl-	TKG		SOI	RTIERUNG	in %		Korn-
(Mittel nur aus Hauptsortiment)		Sorten	ertrag dt/ha	Gewicht kg	g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
Arnstein	1	27	67,4	81,0	35,2	60,1	31,5	5,1	3,3	91,6	6,3
	2		90,3	84,7	43,9	85,7	10,5	1,8	2,0	96,2	5,3
	Mittel		78,8	82,9	39,6	72,9	21,0	3,4	2,7	93,9	5,8
Giebelstadt	1	27	88,9	84,5	41,1	77,4	16,9	2,4	3,2	94,4	6,5
	2		97,2	85,6	43,7	83,9	11,7	1,8	2,6	95,6	6,0
	Mittel		93,1	85,0	42,4	80,7	14,3	2,1	2,9	95,0	6,2
Günzburg	1	27	96,2	80,4	43,3	84,5	12,7	1,7	1,2	97,1	6,3
	2		113,0	81,4	47,2	90,0	7,1	1,5	1,4	97,1	6,0
	Mittel		104,6	80,9	45,2	87,2	9,9	1,6	1,3	97,1	6,1
Buxheim	1	27	92,3	79,4	43,7	87,0	10,7	1,2	1,1	97,7	6,3
	2		102,5	80,6	47,0	91,0	7,0	1,0	1,1	98,0	6,1
	Mittel		97,4	80,0	45,3	89,0	8,9	1,1	1,1	97,8	6,2
Intensität	1		80,9	81,5	42,3	77,8	17,1	2,7	2,4	94,9	6,3
	2		89,8	82,4	45,3	82,7	12,6	2,4	2,3	95,3	5,9
	Mittel		85,4	81,9	43,8	80,3	14,8	2,6	2,3	95,1	6,1

Kornphysikalische Untersuchungen, Sorten, mehrjährig

Sorte	Anzahl-	Qualität	Korn-	hl- gewicht kg	TKG g		Korn-				
	Versuche		ertrag dt/ha			> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
abschließende Be	ewertung										
Axioma	34	E	85,7	80,9	43,6	90,1	7,8	1,2	0,9	97,9	5,1
Kerubino EU	34	(E)	87,4	80,2	43,9	84,6	12,3	1,6	1,5	96,9	5,2
Moschus	24	Е	87,7	82,2	45,3	91,2	6,7	0,8	1,3	97,9	4,9
Ponticus	34	Е	86,8	81,0	42,7	86,2	10,6	1,4	1,8	96,8	5,3
Apostel	34	А	93,4	79,8	45,7	90,8	5,6	1,6	2,0	96,4	5,0
Chiron	26	Α	88,2	81,7	42,3	84,1	12,8	1,7	1,4	96,9	5,3
Julius	34	Α	87,1	81,2	43,9	79,9	16,4	2,2	1,5	96,4	4,9
Nordkap	27	Α	89,2	79,0	43,4	80,3	15,8	2,2	1,6	96,1	5,0
Patras	34	Α	89,1	79,2	49,2	88,3	9,0	1,4	1,3	97,2	4,3
RGT Reform	34	Α	90,5	80,5	43,3	78,7	17,2	2,5	1,6	95,9	5,1
Spontan	34	Α	88,8	81,2	43,2	88,0	8,2	1,7	2,1	96,2	5,1
Boss	24	В	93,0	80,1	38,6	71,9	22,2	3,9	2,1	94,1	5,6
Faustus	34	В	91,4	79,1	39,5	75,0	20,0	2,8	2,2	95,0	5,6
Kamerad	26	В	90,5	80,2	41,2	79,2	15,2	2,6	3,0	94,4	5,7
Elixer	34	С	94,5	78,2	40,3	76,1	19,1	2,9	1,9	95,2	5,3
Mittel (aus allen Sorten)		90,3	80,0	43,1	81,4	14,3	2,4	1,9	95,7	5,2	

Berechnung mit LSMEANS (sorte*umwelt): 2016 = 10 Orte, 2017 = 12 Orte, 2018 = 12 Orte

Quelle: LfL, IPZ 2a, Sort. 102 / 2016-2018, 2 Behandlungsstufen

Kornphysikalische Untersuchungen, Sorten, mehrjährig - Fortsetzung

Sorte	Anzahl- Versuche	Qualität	Korn-	hl-	TKG g	SORTIERUNG in %					
			ertrag dt/ha	gewicht kg		> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
vorläufige Bewertur	ıg										
Beryll	14	Е	91,8	80,9	44,2	83,7	13,5	1,3	1,5	97,2	5,2
Expo	17	Е	85,5	80,4	44,0	86,7	10,3	1,2	1,8	97,0	5,1
KWS Emerick	17	Е	90,6	81,0	46,7	85,1	11,4	2,0	1,6	96,5	4,9
Asory	17	Α	95,7	80,9	44,0	74,0	20,3	3,5	2,2	94,3	5,3
Chaplin	17	Α	91,6	80,1	45,2	82,3	14,8	1,7	1,2	97,1	5,4
LG Initial	17	Α	91,4	77,9	39,8	71,6	22,6	3,3	2,5	94,2	5,8
RGT Aktion	14	Α	90,0	79,8	41,4	82,3	12,5	2,3	2,8	94,9	5,3
Argument	17	В	95,3	81,7	48,0	87,3	8,8	2,4	1,5	96,1	5,1
Hymalaya ^H	17	В	96,7	80,3	42,8	84,3	11,6	2,1	2,1	95,8	5,3
Informer	17	В	97,2	78,1	46,6	79,2	17,0	2,3	1,5	96,2	5,3
KWS Talent	14	В	94,3	80,0	41,6	80,9	14,7	2,5	1,9	95,6	5,5
RGT Sacramento ¹⁾	14	В	88,3	79,4	44,4	84,8	10,5	2,6	2,1	95,3	4,9
Sorten mit regionale	r Bedeutung										
Impression	29	А	86,4	79,9	44,1	81,2	13,5	2,9	2,4	94,6	5,0
Kometus	29	Α	81,2	80,9	37,8	69,4	22,3	4,8	3,5	91,7	5,7
Lemmy	10	Α	89,1	78,4	37,5	64,1	27,0	6,0	2,9	91,1	5,8
Meister	24	Α	88,3	78,4	46,1	89,6	7,4	1,3	1,7	97,0	5,1
Sheriff	27	С	94,2	78,6	38,7	73,1	21,5	2,9	2,5	94,6	6,0
Mittel (aus allen Sorten)			90,3	80,0	43,1	81,4	14,3	2,4	1,9	95,7	5,2

¹⁾ Grannenweizen; Hybridweizen

Quelle: LfL, IPZ 2a, Sort. 102 / 2016-2018, 2 Behandlungsstufen

Berechnung mit LSMEANS (sorte*umwelt): 2016 = 10 Orte, 2017 = 12 Orte, 2018 = 12 Orte

Kornphysikalische Untersuchungen, Sorten und Behandlungen, dreijährig

Sorte	Qualität	Stufe	Korn-	hl- Gewicht kg	TKG		Korn-				
			ertrag dt/ha		g	> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
Axioma	E	1	82,0	80,6	43,0	89,2	8,7	1,2	1,0	97,9	5,2
		2	89,4	81,1	44,3	91,1	6,9	1,2	0,9	97,9	4,9
		Mittel	85,7	80,9	43,6	90,1	7,8	1,2	0,9	97,9	5,1
Kerubino EU	(E)	1	80,4	79,7	42,6	82,4	14,4	1,7	1,5	96,8	5,5
		2	94,4	80,6	45,3	86,8	10,2	1,5	1,5	97,0	4,9
		Mittel	87,4	80,2	43,9	84,6	12,3	1,6	1,5	96,9	5,2
Ponticus	E	1	82,0	80,2	41,1	83,6	12,9	1,7	1,9	96,5	5,6
		2	91,6	81,7	44,3	88,9	8,3	1,1	1,7	97,2	4,9
		Mittel	86,8	81,0	42,7	86,2	10,6	1,4	1,8	96,8	5,3
Apostel	Α	1	89,4	79,5	44,8	90,2	6,1	1,7	2,1	96,3	5,1
		2	97,4	80,1	46,7	91,5	5,0	1,6	1,9	96,5	4,8
		Mittel	93,4	79,8	45,7	90,8	5,6	1,6	2,0	96,4	5,0
Julius	Α	1	79,5	80,2	41,8	74,9	20,9	2,7	1,5	95,8	5,3
		2	94,7	82,1	46,0	85,0	11,9	1,7	1,4	96,9	4,5
		Mittel	87,1	81,2	43,9	79,9	16,4	2,2	1,5	96,4	4,9
Patras	Α	1	83,3	78,6	47,7	86,6	10,5	1,6	1,3	97,1	4,6
		2	94,9	79,8	50,6	90,0	7,4	1,3	1,3	97,4	4,1
		Mittel	89,1	79,2	49,2	88,3	9,0	1,4	1,3	97,2	4,3

2016 = Durchschnittswerte von 10 Orten

2017 = Durchschnittswerte von 12 Orten

2018 = Durchschnittswerte von 12 Orten

Kornphysikalische Untersuchungen, Sorten und Behandlungen, dreijährig - Fortsetzung

Sorte	Qualität	Stufe	Korn-	hl- Gewicht kg	TKG g		Korn-				
			ertrag dt/ha			> 2,5 mm	2,2-2,5 mm	2,0-2,2 mm	< 2,0 mm	> 2,2 mm	aus- bildung
RGT Reform	A	1	84,0	79,8	41,5	73,9	21,2	3,1	1,8	95,1	5,4
		2	97,0	81,3	45,2	83,4	13,3	1,8	1,4	96,7	4,8
		Mittel	90,5	80,5	43,3	78,7	17,2	2,5	1,6	95,9	5,1
Spontan	Α	1	85,1	81,0	42,7	87,8	8,6	1,6	2,0	96,4	5,2
		2	92,4	81,4	43,8	88,3	7,7	1,8	2,2	96,0	4,9
		Mittel	88,8	81,2	43,2	88,0	8,2	1,7	2,1	96,2	5,1
Faustus	В	1	84,6	78,5	38,0	71,0	23,8	2,9	2,3	94,8	5,9
		2	98,1	79,7	41,0	79,0	16,1	2,8	2,2	95,1	5,2
		Mittel	91,4	79,1	39,5	75,0	20,0	2,8	2,2	95,0	5,6
Elixer	С	1	89,1	77,6	39,0	72,0	22,5	3,4	2,1	94,5	5,6
		2	99,9	78,8	41,5	80,3	15,6	2,4	1,8	95,9	5,0
		Mittel	94,5	78,2	40,2	76,1	19,1	2,9	1,9	95,2	5,3
Intensität		1	83,9	79,6	42,2	81,1	15,0	2,2	1,7	96,1	5,3
		2	95,0	80,7	44,9	86,4	10,2	1,7	1,6	96,7	4,8
		Mittel	89,5	80,1	43,5	83,8	12,6	1,9	1,7	96,4	5,1

2016 = Durchschnittswerte von 10 Orten

2017 = Durchschnittswerte von 12 Orten

2018 = Durchschnittswerte von 12 Orten