

Versuchsergebnisse aus Bayern 2016 bis 2018

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation

Ergebnisse aus Versuchen in Zusammenarbeit mit den Ämtern für Ernährung, Landwirtschaft und Forsten

Herausgeber: Bayerische Landesanstalt für Landwirtschaft

Institut für Agrarökologie-Düngung Lange Point 12, 85354 Freising

(C

Autoren: Dr. M. Wendland, K. Offenberger, L. Heigl, T. Eckl Kontakt: Tel.: 08161/8640-5499, Fax: 08161/8640-5089

E-Mail: Matthias.Wendland@LfL.bayern.de

http://www.LfL.bayern.de/

LfL-Versuche Düngung

Inhaltsverzeichnis

Standortbeschreibung	3
Düngeplan	
Nährstoffgehalte von Rindergülle und Biogasgärrest	
Erträge, N-Abfuhr, Düngung	6
Rotthalmünster	6
Großbreitenbronn	7
Günzburg	8
Alle Orte	g
Kommentar	10
Allgemeine Versuchsbeschreibung	10
Funktion und Beschreibung der Düngesysteme	10
N-Düngung	
Erträge	11
N-Abfuhr:	12
N-Bilanz	13
Mineraldüngeräquivalent (MDÄ)	13
Nmin-Werte	14
Zusammenfassung	15
Mineralische Düngung:	
Organische Düngung:	

N-Düngung zu Silomais Versuch 535

Versuchsfrage

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation

Standortbeschreibung

Ort	Rotthalmünster			Großb	reitenbr	onn	Günzburg					
Landkreis	Passa	u		Ansba	ch		Günzb	urg				
Landschaft	Tertiär	·-Hügella	ınd	Nordba	ayer. Hüç	gelland	Tertiär-Hügelland					
∅ Jahresniederschläge (mm)	750			679			751 					
∅ Jahrestemperatur (°C)	8,1			7,7			7,3					
Höhe über NN (m)	375			443			470					
Bodentyp	Parab	raunerde)	Parabra	aunerde		Parabr	aunerde				
Bodenart	sL			sL			sL					
Geologische Herkunft	Diluviu	ım		Alluviu	m		Löss					
Ackerzahl	70			43			65					
Bodenuntersuchung												
Versuchsjahr	2016	2017	2018	2016	2017	2018	2016	2017	2018			
pH-Wert	5,7	5,9	6,5	6,6	6,3	5,6	6,8	6,5	7,0			
P ₂ O ₅ (mg/100 g Boden)	13	21	21	46	21	16	9	18	12			
K ₂ O (mg/100 g Boden)	11	15	18	28	26	38	5	12	16			
N _{min} -Gehalt im Frühjahr (kg/ha)												
0 – 30 cm	24	52	40	48	42	23	25	39	28			
30 – 60 cm	7	11	26	31	43	15	6	28	6			
60 – 90 cm	5	12	12	25	16	26	6	45	5			
0 – 90 cm	36	75	78	104	101	64	37	112	39			

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation Düngeplan

				N-Dünç	gung (kg/ha)		
Vgl.	Düngungsstufe	organisch vor Saat	organisch 40 cm Wuchsh.	mineralisch vor Saat	mineralisch Unterfuß	mineralisch 20 cmWuchsh.	Bemerkung
1	KAS 30	0	0	0	30	0	
2	KAS 80	0	0	0	30	50	
3	KAS 120	0	0	30	30	60	
4	KAS 150	0	0	60	30	60	
5	KAS 180	0	0	90	30	60	
6	DSN (KAS)	0	0	DSN	30	DSN	
7	N-Simulation (KAS)	0	0	N-Sim	30	N-Sim	
8	Gülle 85+85+ 30 KAS	85	85	0	30	0	
9	Gülle 170 + 30 KAS	170	0	0	30	0	
10	Gülle 170 + N-Sim	170	0	N-Sim	30	N-Sim	
11	Gülle 170 + DSN	170	0	DSN	30	DSN	
12	Gülle 170 + Vizura + 30 KAS	170 + Vizura	0	0	30	0	
13	Gülle 100 + 30 KAS + 40ASL	100	0	0	30	40 ASL	Cultanverfahren
14	Gülle 100 + 70 KAS	100	0	0	30	40	
15	Gülle 100 + 40 ASL + 30 KAS	100 + 40 ASL	0	0	30	0	ASL zur Gülle
16	Harnst. 30/60 Ureasehemmst.	0	0	30 HS	30	60 HS	
17	Harnstoff 30/60 normal	0	0	30 HS	30	60 HS	
18	Harnstoff 90 Ureasehemmst.	0	0	90 HS	30	0	
19*	KAS 120+Spurenelem.	0	0	30	30	60	Anhang

^{*} Anhang in Rotthalmünster

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation Nährstoffgehalte von Rindergülle und Biogasgärrest

Standort			Rotthalı	münster			Großbrei	tenbronr	1	Günzburg				
Erntejahr			Schwei	negülle			Biogas	gärrest		Biogasgärrest				
Ausbringtermin	N/ha	TS %	N_{ges}	NH ₄ -N	m³/ha	TS %	N_{ges}	NH ₄ -N	m³/ha	TS %	N_{ges}	NH ₄ -N	m³/ha	
Ernte 2016														
vor der Maissaat	170	2,9	4,7	3,7	36	4,1	5,7	4,5	30	5,4	4,0	2,9	42	
vor der Maissaat	100	2,9	4,7	3,7	21	4,1	5,7	4,5	17	5,4	4,0	2,9	25	
vor Saat / in Bestand (30cm)	85/85	2,9	4,7	3,7	18/18	4,1/4,0	5,7/6,4	4,5/5,2	15/13	5,4/5,7	4,0/3,8	2,9/2,6	21/22	
Ernte 2017														
vor der Maissaat	170	2,5	3,5	2,7	49	6,6	7,3	5,1	24	6,2	4,3	3,0	40	
vor der Maissaat	100	2,5	3,5	2,7	28,5	6,6	7,3	5,1	14	6,2	4,3	3,0	23	
vor Saat / in Bestand (30cm)	85/85	2,5	3,5	2,7	25/25	6,6	7,3	5,1	12/12	6,2/6,7	4,3/4,8	3,0/3,2	20/18	
Ernte 2018														
vor der Maissaat	170	2,0	2,9	2,2	59	4,9	7,1	5,2	24	4,6	3,8	2,4	45	
vor der Maissaat	100	2,0	2,9	2,2	34,5	4,9	7,1	5,2	14	4,6	3,8	2,4	26	
vor Saat / in Bestand (30cm)	85/85	2,0	2,9	2,2	29/29	4,9	7,1	5,2	12/12	4,6	3,8	2,4	22/22	
Mittel 2016 bis 2018														
vor der Maissaat	170	2,5	3,7	2,9	48	5,2	6,7	4,9	26	5,4	4,0	2,8	42	
vor der Maissaat	100	2,5	3,7	2,9	28	5,2	6,7	4,9	15	5,4	4,0	2,8	25	
vor Saat / in Bestand (30cm)	85/85	2,5	3,7	2,9	24	5,2/5,2	6,7/6,9	4,9/5,2	13/12	5,4/5,7	4,0/4,1	2,8/2,7	21/21	

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation Erträge, N-Abfuhr, Düngung

Rotthalmünster Ernte 2016 - 2018

		2016					2017				2018				2016 - 2018			
VgI	Düngungsstufe	Dün	gung	Ertrag	N-Abf.	Dür	gung	Ertrag	N-Abf.	Dün	gung	Ertrag	N-Abf.	Dün	gung	Ertrag	N-Abf.	
		org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	
1	KAS 30		30	161,6	139,1		30	156,1	139,4		30	172,0	171,3		30	163,2	149,9	
2	KAS 80	1	80	189,2	166,0		80	192,9	182,0		80	179,3	178,5	-	80	187,1	175,5	
3	KAS 120		120	197,0	181,3		120	189,2	196,4		120	197,7	215,6		120	194,6	197,7	
4	KAS 150		150	225,2	219,3		150	191,4	208,0		150	214,1	230,1		150	210,2	219,1	
5	KAS 180	-	180	215,5	214,9		180	195,8	207,3		180	211,0	249,3	-	180	207,4	223,8	
6	DSN (KAS)		195	220,5	238,4		155	202,8	212,6		165	212,4	253,7		172	211,9	234,9	
7	N-Simulation (KAS)		165	215,1	223,6		185	198,2	208,0		182	212,9	251,4		177	208,7	227,7	
8	Gülle 85+85+ 30 KAS	169	30	206,2	196,8	172	30	185,8	192,9	171	30	210,5	240,7	171	30	200,8	210,1	
9	Gülle 170 + 30 KAS	169	30	200,1	187,4	172	30	195,4	203,5	171	30	198,6	227,3	171	30	198,1	206,1	
10	Gülle 170 + N-Sim	169	50	211,9	198,9	172	60	202,5	214,6	171	50	190,5	235,7	171	53	201,6	216,4	
11	Gülle 170 + DSN	169	105	216,7	226,2	172	65	199,9	215,6	171	70	204,8	249,6	171	80	207,2	230,5	
12	Gü170+Vizura+30 KAS	169	30	200,1	188,3	172	30	192,8	198,8	171	30	188,7	227,6	171	30	193,8	204,9	
13	Gü100+30KAS+40ASL	99	70	199,1	184,3	100	70	174,5	179,4	100	70	199,8	228,0	100	70	191,1	197,2	
14	Gülle 100 + 70 KAS	99	70	206,4	205,9	100	70	197,3	202,8	100	70	195,4	228,4	100	70	199,7	212,4	
15	Gü100+40ASL+30 KAS	99	70	197,0	176,2	100	70	202,9	206,2	100	70	196,8	230,7	100	70	198,9	204,3	
16	Harnst. 30/60 Urease		120	214,6	210,6		120	189,3	194,0		120	209,6	226,4		120	204,5	210,3	
17	Harnstoff 30/60 normal	-	120	211,4	190,3		120	193,6	197,2		120	197,8	212,0	-	120	200,9	199,8	
18	Harnst. 90 Urease.		120	199,8	178,0		120	191,0	194,0		120	207,7	222,9		120	199,5	198,3	
19*	KAS 120+Spurenelem.		120	211,8	198,1		120	194,1	194,7		120	210,0	219,3		120	205,3	204,0	
GD 5	%																	

^{*}Anhang Rotthalomünster Düngung organisch: Nges. in kg/ha; Düngung mineralisch: Summe der 1., 2. und 3. N-Gabe

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation

Erträge, N-Abfuhr, Düngung

Großbreitenbronn
Ernte 2016 - 2018

				2016		2017						2018		2018				
Vgl	Düngungsstufe	Düngung Ertrag		Ertrag	N-Abf.	Düngung		Ertrag	N-Abf.	Düngung		Ertrag	N-Abf.	Dür	gung	Ertrag	N-Abf.	
		org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	
1	KAS 30										30	190,5	196,6		30	190,5	196,6	
2	KAS 80										80	193,4	207,0		80	193,4	207,0	
3	KAS 120		NI	CHT			NI	CHT			120	194,8	211,6		120	194,8	211,6	
4	KAS 150										150	199,4	224,3		150	199,4	224,3	
5	KAS 180		WEF	RTBAR			WEF	RTBAR			180	193,4	214,1		180	193,4	214,1	
6	DSN (KAS)										130	197,8	217,2		130	197,8	217,2	
7	N-Simulation (KAS)										160	201,6	226,3		160	201,6	226,3	
8	Gülle 85+85+ 30 KAS									166	30	199,4	214,9	166	30	199,4	214,9	
9	Gülle 170 + 30 KAS									166	30	199,8	217,1	166	30	199,8	217,1	
10	Gülle 170 + N-Sim									166	30	205,6	229,8	166	30	205,6	229,8	
11	Gülle 170 + DSN									166	60	198,1	229,4	166	60	198,1	229,4	
12	Gü170+Vizura+30 KAS									166	30	198,1	219,5	166	30	198,1	219,5	
13	Gü100+30KAS+40ASL									97	70	197,4	218,6	97	70	197,4	218,6	
14	Gülle 100 + 70 KAS									97	70	199,4	221,0	97	70	199,4	221,0	
15	Gü100+40ASL+30 KAS									97	70	202,0	222,2	97	70	202,0	222,2	
16	Harnst. 30/60 Urease										120	199,9	226,2		120	199,9	226,2	
17	Harnstoff 30/60 normal										120	192,7	206,9		120	192,7	206,9	
18	Harnst. 90 Urease.										120	201,5	222,0		120	201,5	222,0	
GD 5	%																	

Düngung organisch: Nges. in kg/ha; Düngung mineralisch: Summe der 1., 2. und 3. N-Gabe

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation

Erträge, N-Abfuhr, Düngung

Günzburg Ernte 2016 - 2018

				2016		2017						2018			8		
Vgl	Düngungsstufe	Dün	gung	Ertrag	N-Abf.	Dün	gung	Ertrag	N-Abf.	Dün	ngung	Ertrag	N-Abf.	Dün	gung	Ertrag	N-Abf.
		org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha	org.	min.	dt/ha	kg/ha
1	KAS 30		30	180,8	156,7						30	226,3	199,1		30	203,6	177,9
2	KAS 80		80	195,9	178,3						80	227,7	225,5		80	211,8	201,9
3	KAS 120		120	210,8	199,5		NI	CHT			120	235,6	250,0		120	223,2	224,7
4	KAS 150		150	222,4	228,7						150	232,6	249,7		150	227,5	239,2
5	KAS 180		180	222,5	250,3		WER	TBAR			180	234,6	267,4		180	228,6	258,9
6	DSN (KAS)		165	221,9	241,2						156	228,0	236,2		161	224,9	238,7
7	N-Simulation (KAS)		145	226,5	235,4						137	241,7	260,1		141	234,1	247,7
8	Gülle 85+85+ 30 KAS	173	30	218,1	217,7					181	30	239,4	237,6	177	30	228,7	227,7
9	Gülle 170 + 30 KAS	186	30	221,0	202,4					193	30	222,6	224,3	190	30	221,8	213,3
10	Gülle 170 + N-Sim	186	30	210,0	205,7					193	60	232,0	234,0	190	45	221,0	219,8
11	Gülle 170 + DSN	186	90	234,9	253,5					193	50	237,3	236,8	190	70	236,1	245,2
12	Gü170+Vizura+30 KAS	186	30	214,4	208,2					193	30	230,8	224,6	190	30	222,6	216,4
13	Gü100+30KAS+40ASL	110	70	216,0	214,9					113	70	228,5	221,5	112	70	222,2	218,2
14	Gülle 100 + 70 KAS	110	70	215,3	219,1					113	70	233,8	235,8	112	70	224,6	227,4
15	Gü100+40ASL+30 KAS	110	70	223,3	221,6					113	70	233,5	243,4	112	70	228,4	232,5
16	Harnst. 30/60 Urease		120	223,3	227,1						120	240,1	269,4		120	231,7	248,3
17	Harnstoff 30/60 normal		120	216,3	225,5						120	230,8	238,4		120	223,5	231,9
18	Harnst. 90 Urease.		120	217,9	230,4						120	232,1	251,1		120	225,0	240,7
GD 5	%																

Düngung organisch: Nges. in kg/ha; Düngung mineralisch: Summe der 1., 2. und 3. N-Gabe

Unterschiedliche org. Düngemenge zu Silomais unter Einbeziehung von DSN und N-Simulation

Erträge, N-Abfuhr, Düngung

Alle Orte

n = 6

Ernte 2016 - 2018

		11 = 0			
			20 ⁻	16 - 2018	
VgI	Düngungsstufe	Dün	gung	Ertrag	N-Abf.
		org.	min.	dt/ha	kg/ha
1	KAS 30		30	181,2	167,0
2	KAS 80		80	196,4	189,5
3	KAS 120		120	204,2	209,1
4	KAS 150		150	214,2	226,7
5	KAS 180		180	212,1	233,9
6	DSN (KAS)		161	213,9	233,2
7	N-Simulation (KAS)		162	216,0	234,1
8	Gülle 85+85+ 30 KAS	172	30	209,9	216,8
9	Gülle 170 + 30 KAS	176	30	206,3	210,3
10	Gülle 170 + N-Sim	176	47	208,8	219,8
11	Gülle 170 + DSN	176	73	215,3	235,2
12	Gü170+Vizura+30 KAS	176	30	204,1	211,2
13	Gü100+30KAS+40ASL	103	70	202,5	207,8
14	Gülle 100 + 70 KAS	103	70	207,9	218,8
15	Gü100+40ASL+30 KAS	103	70	209,3	216,7
16	Harnst. 30/60 Urease	172	120	212,8	225,6
17	Harnstoff 30/60 normal		120	207,1	211,7
18	Harnst. 90 Urease.		120	208,3	216,4
19*	KAS 120+Spurenelem.		120	205,3	204,0
GD 5	%			8,2	13,7

^{*}Anhang Rotthalomünster Düngung organisch: Nges. in kg/ha; Düngung mineralisch: Summe der 1., 2. und 3. N-Gabe

Kommentar

Allgemeine Versuchsbeschreibung

Eine optimierte Stickstoffdüngung ist eine Grundvoraussetzung für hohe Erträge und gleichzeitig geringe Stickstoffverluste. Grundlage hierfür ist eine, den Ertragserwartungen angepasste Stickstoffdüngung. Dies betrifft die mineralische als auch die organische Düngung. Um den Einfluss dieser Faktoren erforschen und optimieren zu können, wurden in Bayern Versuche an den Standorten Rotthalmünster. Großbreitenbronn und Günzburg zu Silomais mit einer Laufzeit von jeweils drei Jahren durchgeführt. Es wurden die Systeme DSN (Düngeberatungssystem Stickstoff) und N-Simulation jeweils mit bzw. ohne organischer Düngung auf den Ertrag und die Einflüsse auf die Umwelt (z.B. Nmin-Gehalt, N-Bilanz) geprüft. Dabei erfolgt die Aufteilung der N-Gaben variabel und nach unterschiedlichen Kriterien. Zum Vergleich wurde eine starre Mineraldüngersteigerung (KAS) mit 5 N-Stufen (0 -180 kg/ha) angelegt. Zusätzlich wurde eine Variante mit Harnstoff (mit und ohne Ureasehemmer) geprüft. Der häufig diskutierte Einsatz von ASL (Ammonium-Sulfat-Lösung) als Beimischung in die Gülle (Ansäuerung) bzw. in den Boden injiziert (Cultanverfahren), wurde als weitere Variante geprüft. ASL fällt z.B. bei der Abluftfilterung oder Herstellung von Blausäure an. Es enthält in der Regel 8% N und 9% Schwefel. Die Gülle wurde mit Gießkannen (Nachstellung Schleppschlauch) auf die Parzellen ausgebracht und vor der Maissaat unverzüglich eingearbeitet. In einer Variante wurde die Gülle an zwei Terminen (vor Saat, in den Bestand) ausgebracht. Auf dem Standort Rotthalmünster wurde Schweinegülle (2,5 % TS), in Großbreitenbronn und Günzburg Biogasgärrest (5,3 % TS) verwendet.

Um die N-Wirkung organischer Dünger im Anwendungsjahr vergleichen zu können, ist das Mineraldüngeräquivalent (MDÄ) ein guter Parameter. Die N-Verfügbarkeit organischer Düngemittel wird dabei in Beziehung zur N-Verfügbarkeit mineralischer Dünger gesetzt und ist somit ein Indiz für die Ausnutzung organischer Düngemittel im Vergleich zu Mineraldünger. In der Regel wird das MDÄ in % relativ zur Wirkung von N-Mineraldünger dargestellt.

Funktion und Beschreibung der Düngesysteme

DSN

Das Düngeberatungssystem Stickstoff (DSN) ist die in Bayern am meisten eingesetzte Methode, um genaue Beratungsaussagen treffen zu können. Aufbauend auf einen N-Sollwert wird unter Berücksichtigung des N_{min} -Wertes im Frühjahr und weiteren Zu- und Abschlägen (Vorfrucht, Boden, Ertragserwartung, ...) der Düngebedarf errechnet. Des Weiteren wird dann die zu düngende Gesamt-N-Menge berechnet.

N-Simulation

Bei der N-Simulation erfolgt die Berechnung des Düngebedarfs ähnlich wie bei DSN. Im Gegensatz zu DSN wird der Nmin-Wert im Frühjahr zu Vegetationsbeginn nicht gemessen, sondern aus verschiedenen Einflussfaktoren wie Witterung, Boden, Vorfrucht usw. berechnet. Zusätzlich wird die N-Wirkung der org. Düngung nicht nach einem festen Schema sondern anhand verschiedener Witterungsdaten der nächstgelegenen Wetterstation abgeschätzt.

N-Düngung

Die Düngung mit Stickstoff ist eines der wichtigsten Hilfsmittel die dem Landwirt zu Verfügung stehen um die Wachstums- und Ertragsentwicklung zu steuern. Da Mais die hohe N-Lieferung aus dem Boden, z.B. aufgrund der Bodenbearbeitung im Frühjahr gut nutzen kann und spät geerntet wird, kann er den mineralisierten Stickstoff gut ausnutzen. Somit ist die richtige Mengenbemessung von entscheidender Bedeutung.

Erträge

Mineraldüngung

In Abb. 1 sind die Silomaiserträge bei Mineraldüngung dargestellt. Dabei wird ersichtlich, dass mit einer N-Steigerung bis zu 150 kg N/ha die Erträge kontinuierlich angehoben wurden. Bei einer Düngung mit 180 kg N/ha war keine Ertragssteigerung mehr möglich. Die Düngeberatungssysteme DSN (161 N/ha) und N-Simulation (162 N/ha) erreichten mit ca. 216 dt/ha ebenfalls Höchsterträge. Beide Düngesysteme sind somit gut geeignet den Düngebedarf von Mais zu ermitteln. Die Harnstoffvarianten bei denen 120 kg N/ha ausgebracht wurden, lagen um 3 – 5 dt/ha über der KAS-Variante mit 120 N/ha. In allen Varianten wurde eine Unterfußdüngung in Höhe von 30 kg N/ha (in den angegebenen Mengen bereits berücksichtigt), gegeben. Die restliche N-Menge wurde in einer Gabe v. d. Saat bzw. aufgeteilt als zweite Gabe in den Bestand ausgebracht.

Organische Düngung bzw. Kombination mit Mineraldünger

In Abb. 2 sind die Silomaiserträge bei org. bzw. kombinierter org./min. Düngung dargestellt. Wie an den Säulen erkennbar, wurde mit der Variante Gülle + DSN mit 215 dt/ha der Höchstertrag erzielt. Allerdings wurde hier mit 250 kg N/ha die höchste N-Menge aller Varianten gegeben. Mit 202 dt/ha fiel die Kombination Gülle (100 N/ha) mit 40 kg N/ha in Form von ASL ausgebracht im sogenannten Cultanverfahren (Bodeninjektion in 30 cm Wuchshöhe), etwas ab. Ansonsten liegen die Erträge über alle Varianten, unabhängig ob mit einer Aufteilung in zwei Gaben, einer Zugabe von ASL direkt in die Gülle oder dem Zusatz von Nitrifikationshemmern (Vizura), auf demselben Niveau.

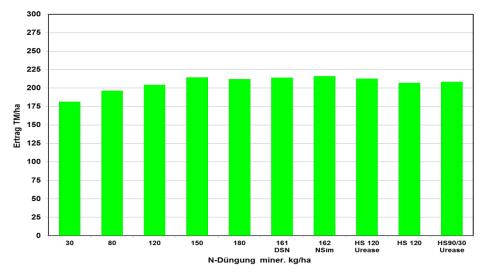


Abb. 1: Erträge bei Silomais mit mineralischer N-üngung, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

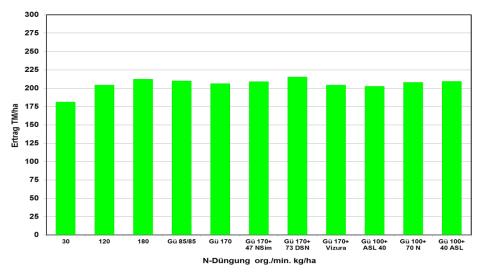


Abb. 2: Erträge bei Silomais mit organisch/mineralischer N-Düngung, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

N-Abfuhr:

Die N-Abfuhr ist neben der ausgebrachten N-Menge (org. und min.) der entscheidende Faktor zur Berechnung des N-Saldos. Ziel muss es sein die Effizienz der Düngung zu verbessern, also mit geringem N-Einsatz hohe N-Abfuhren zu erzielen. Dazu können verschiedene pflanzenbauliche Aspekte wie z.B. eine entsprechende Fruchtfolge mit darauf abgestimmter Bodenbearbeitung, ertragsreiche Sorten, teilflächenspezifische Düngung usw. beitragen.

Mineralische Düngung

In Abbildung 3 ist die N-Abfuhr bei mineralischer Düngung im Mittel aus 3 Jahren dargestellt. Dabei ist zu sehen, dass trotz geringeren N-Mengen in den Varianten DSN (161) und N-Sim (162) dieselben Abfuhren erzielt wurden wie mit 180 kg N/ha KAS starr gedüngt. In den Harnstoffvarianten (120 kg N) wurden um 3 bis 16 kg N/ha mehr abgefahren als in der starren KAS-Variante bei der ebenfalls 120 kg N/ha ausgebracht wurden.

Organische Düngung bzw. Kombination mit Mineraldünger

Die N-Abfuhr bei organischer Düngung im Mittel aus 3 Jahren ist in Abbildung 4 dargestellt. Hier zeigt sich, dass, sobald Gülle eingesetzt wurde, generell mehr Stickstoff nötig war, um dieselben N-Abfuhren wie mit der starren Mineraldüngung zu erzielen. So wurde z.B. in der KAS-Variante (starre Düngung) mit 180 kg N/ha eine Abfuhr von 234 kg N/ha erzielt. Um dasselbe Ergebnis zu erzielen, waren in der Gülle-DSN-Variante 243 kg N/ha nötig. Mit einer N-Abfuhr von 208 kg/ha fiel die Kombination Gülle (100 N/ha) mit 40 kg N/ha in Form von ASL (Ammoniumsulfatlösung), ausgebracht im sogenannten Cultanverfahren (Bodeninjektion in 30 cm Wuchshöhe), etwas ab. Ansonsten liegen die N-Abfuhren über alle Varianten, unabhängig ob mit einer Aufteilung in zwei Gaben, einer Zugabe von ASL direkt in die Gülle oder dem Zusatz von Nitrifikationshemmern (Vizura), auf demselben Niveau.

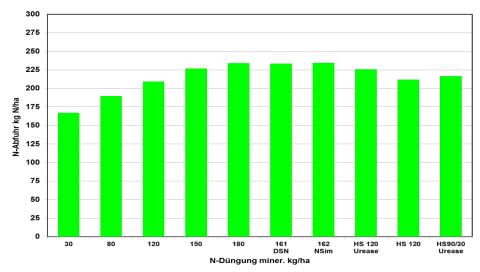


Abb. 3: N-Abfuhr bei Silomais mit mineralischer N-Düngung, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

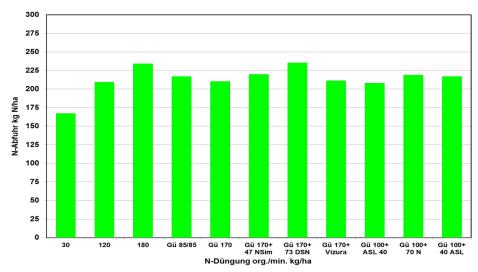


Abb. 4: N-Abfuhr bei Silomais mit organisch/mineralischer N-Düngung, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

N-Bilanz

Ziel der Bilanzierung ist es, einen Überblick über die der Fläche (Betrieb) zugeführten Nährstoffe zu gewinnen und somit die Ausgewogenheit von Nährstoffzufuhren und Abfuhren beurteilen zu können. Hohe Überschüsse können z.B. ein Indikator für einen nicht optimalen Einsatz von Wirtschaftsdüngern sein. Ziel muss es sein, die N-Bilanz möglichst ausgeglichen zu halten. In Abbildung 5 sind die Werte im Mittel aus drei Jahren dargestellt. Nahezu in allen Varianten sind trotz zum Teil hoher ausgebrachter Düngemengen negative Bilanzwerte zu erkennen. In den Mineraldüngervarianten kamen Bilanzwerte von -137 bis -54 kg N/ha zustande. Bei den Kombinationen Gülle mit Mineraldüngung traten Werte von -45 bis 14 kg N/ha auf. Dies bestätigt die Fähigkeit des Maises den Stickstoff gut verwerten zu können. Für viehhaltende Betriebe besteht die Möglichkeit organische Dünger, kombiniert mit einer überlegten mineralischen N-Ergänzung, effizient einzusetzen und somit den in der DüV festgelegten Grenzwert von 50 kg N/ha einzuhalten.

Mineraldüngeräquivalent (MDÄ)

Abbildung 6 zeigt das Mineraldüngeräguivalent bei unterschiedlichen Güllevarianten. Hier zeigt sich, dass bei einer organischen Düngung. aufgeteilt in 2 Gaben mit jeweils 85 kg N/ha eine N-Effizienz von 66 % (bezogen auf N-Gesamt) erreicht wurde. Dagegen fiel das MDÄ bei der gleichen ausgebracht N-Menge in einer Gabe vor der Maissaat auf 52 %. Bei einer reduzierten Gülle-N-Menge von 100 kg/ha vor der Saat und einer zusätzlichen mineralischen N-Düngung (40 kg N) in den Bestand stieg das MDÄ auf 59 %. Eine Güllegabe von 100 kg N/ha vor der Saat mit zusätzlicher Beimischung von ASL (40 kg N/ha) erzielte mit 67 % das höchste MDÄ. Laut aktueller Düngeverordnung (DüV) müssen bei der Düngebedarfsermittlung mindestens 50 % (je nach Art des org. Düngers, Mindestwirksamkeit) der ausgebrachten organischen N-Menge angerechnet werden. Mit Ausnahme der Varianten Gülle mit Nitrifikationshemmer sowie Gülle mit ASL (ASL in den Boden inieziert), wurde in diesen Versuchen die Mindestwirksamkeit erreicht. Je höher das MDÄ, umso mehr Stickstoff wird aus der org. Düngung wirksam. Somit kann Mineraldünger eingespart werden.

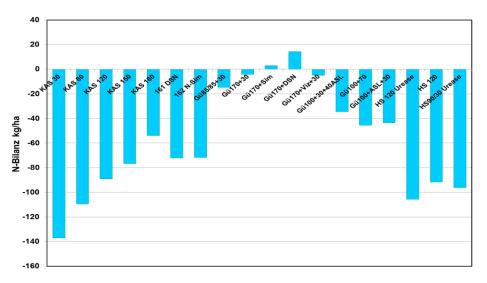


Abb. 5: N-Bilanz bei Silomais mit verschiedenen Düngesystemen, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

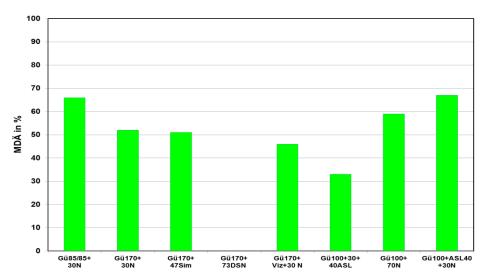


Abb. 6: Mineraldüngeräquivalent bei verschiedenen Güllevarianten, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

Nmin-Werte

Eine gezielte und auf die jeweilige Frucht abgestimmte N-Düngung vermindert das Risiko erhöhter Nmin-Werte nach der Ernte. In diesem Versuch wurden nach der Maisernte Proben von 0 bis 90 cm Tiefe, deren Werte in Abb. 7 dargestellt sind, gezogen. Dabei sind signifikante Unterschiede zwischen den einzelnen Stufen erkennbar. Mit einer Erhöhung der mineralischen N-Düngung (30 bis 180 kg N/ha) stiegen die Werte von 35 auf 74 kg N/ha an. Generell niedriger lagen die Nmin-Werte in den Varianten bei denen Gülle eingesetzt wurden. In der Güllevariante, mit 170 kg N und 30 kg N/ha mineralischer N-Ergänzung, lag der Wert bei 54 kg und somit deutlich niedriger als in der KAS-Variante bei der 180 kg N/ha ausgebracht wurden (74 kg/ha). Am niedrigsten lagen die Werte (45 kg/ha) in der Variante Gülle mit ASL (vor der Ausbringung in die Gülle eingemischt). Eine hohe Güllegabe hat also nicht immer hohe Nmin-Gehalte zur Folge.

Eine Gegenüberstellung der gemessenen Nmin-Werte $(0-90\ cm)$ mit den simulierten Werten ist in Abbildung 8 dargestellt. Die Probenahme bzw. Simulation wurde jeweils im Frühjahr (Mitte März) vor der Düngung durchgeführt. Es zeigte sich, dass die Simulation der Nmin-Werte in Rotthalmünster und Günzburg eine hohe Übereinstimmung mit den gemessenen Werten erreichte. In Großbreitenbronn lagen die gemessenen Nmin-Werte (DSN) im Frühjahr 2016 weit über den Werten der Jahre 2017 und 2018, sodass dieser hohe Mittelwert zustande kam. Bei der Ermittlung der Simulationswerte werden verschiedene Parameter (z.B. Wetterdaten, Bodenart, usw.) berücksichtigt.

Abb. 7: Nmin-Werte nach der Silomaisernte, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

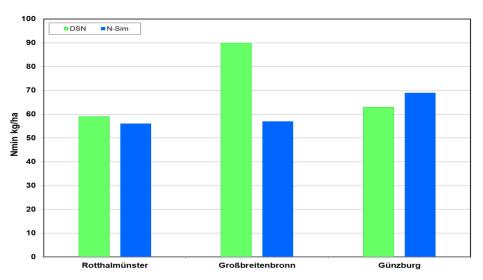


Abb. 8: Nmin-Werte im Frühjahr vor der Düngung, Vergleich Nmin gemessen zu Nmin simuliert, 2016 bis 2018, Mittel aller Orte und Jahre, n=6

Zusammenfassung

Mineralische Düngung:

- bei starrer N-Steigerung (30 bis 180 kg/ha) wurde der Höchstertrag mit 150 kg N/ha erreicht, bei DSN und N-Sim waren ca. 10 kg N/ha mehr nötig um ähnliche Erträge zu erzielen
- Harnstoff (120 kg N/ha) mit Ureasehemmer erzielte h\u00f6here Ertr\u00e4ge als die Vergleichsvariante mit 120 KAS
- mit einer Düngung nach DSN (161 N/ha) bzw. N-Sim (162 N/ha) lag die N-Abfuhr auf dem Niveau der KAS-Var. mit 180 kg N/ha
- in allen Mineraldüngervarianten ergaben sich enorme negative N-Bilanzen (-54 bis -137)
- DSN und N-Sim sind gut geeignet den Düngebedarf zu ermitteln
- nach der Ernte bewegten sich die Nmin-Werte je nach Düngeintensität zwischen 35 und 74 kg N/ha

Organische Düngung:

- die Erträge unterscheiden sich, unabhängig ob mit oder ohne Aufteilung in zwei Gaben, einer Zugabe von ASL in die Gülle, oder dem Zusatz von Nitrifikationshemmern (Vizura), nur geringfügig.
- sobald Gülle eingesetzt wurde, war generell mehr Stickstoff nötig um dieselben N-Abfuhren wie mit reiner Mineraldüng, zu erzielen.
- die N-Bilanz liegt bei organischen Düngung (170 kg N/ha), im nahezu ausgeglichenen Bereich
- die höchsten MDÄ's (67%) werden mit einer Gülledüngung, aufgeteilt in zwei Gaben (vor Saat, in Bestand), bzw. einer Beimischung von ASL in die Gülle, ausgebracht vor der Saat, erreicht
- nach der Ernte bewegen sich die Nmin-Werte in den Güllevarianten zwischen 46 und 63 kg